Step |
Hyp |
Ref |
Expression |
1 |
|
isleag.p |
|- P = ( Base ` G ) |
2 |
|
isleag.g |
|- ( ph -> G e. TarskiG ) |
3 |
|
isleag.a |
|- ( ph -> A e. P ) |
4 |
|
isleag.b |
|- ( ph -> B e. P ) |
5 |
|
isleag.c |
|- ( ph -> C e. P ) |
6 |
|
isleag.d |
|- ( ph -> D e. P ) |
7 |
|
isleag.e |
|- ( ph -> E e. P ) |
8 |
|
isleag.f |
|- ( ph -> F e. P ) |
9 |
3 4 5
|
s3cld |
|- ( ph -> <" A B C "> e. Word P ) |
10 |
|
s3len |
|- ( # ` <" A B C "> ) = 3 |
11 |
1
|
fvexi |
|- P e. _V |
12 |
|
3nn0 |
|- 3 e. NN0 |
13 |
|
wrdmap |
|- ( ( P e. _V /\ 3 e. NN0 ) -> ( ( <" A B C "> e. Word P /\ ( # ` <" A B C "> ) = 3 ) <-> <" A B C "> e. ( P ^m ( 0 ..^ 3 ) ) ) ) |
14 |
11 12 13
|
mp2an |
|- ( ( <" A B C "> e. Word P /\ ( # ` <" A B C "> ) = 3 ) <-> <" A B C "> e. ( P ^m ( 0 ..^ 3 ) ) ) |
15 |
9 10 14
|
sylanblc |
|- ( ph -> <" A B C "> e. ( P ^m ( 0 ..^ 3 ) ) ) |
16 |
6 7 8
|
s3cld |
|- ( ph -> <" D E F "> e. Word P ) |
17 |
|
s3len |
|- ( # ` <" D E F "> ) = 3 |
18 |
|
wrdmap |
|- ( ( P e. _V /\ 3 e. NN0 ) -> ( ( <" D E F "> e. Word P /\ ( # ` <" D E F "> ) = 3 ) <-> <" D E F "> e. ( P ^m ( 0 ..^ 3 ) ) ) ) |
19 |
11 12 18
|
mp2an |
|- ( ( <" D E F "> e. Word P /\ ( # ` <" D E F "> ) = 3 ) <-> <" D E F "> e. ( P ^m ( 0 ..^ 3 ) ) ) |
20 |
16 17 19
|
sylanblc |
|- ( ph -> <" D E F "> e. ( P ^m ( 0 ..^ 3 ) ) ) |
21 |
15 20
|
jca |
|- ( ph -> ( <" A B C "> e. ( P ^m ( 0 ..^ 3 ) ) /\ <" D E F "> e. ( P ^m ( 0 ..^ 3 ) ) ) ) |
22 |
|
elex |
|- ( G e. TarskiG -> G e. _V ) |
23 |
|
fveq2 |
|- ( g = G -> ( Base ` g ) = ( Base ` G ) ) |
24 |
23 1
|
eqtr4di |
|- ( g = G -> ( Base ` g ) = P ) |
25 |
24
|
oveq1d |
|- ( g = G -> ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) = ( P ^m ( 0 ..^ 3 ) ) ) |
26 |
25
|
eleq2d |
|- ( g = G -> ( a e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) <-> a e. ( P ^m ( 0 ..^ 3 ) ) ) ) |
27 |
25
|
eleq2d |
|- ( g = G -> ( b e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) <-> b e. ( P ^m ( 0 ..^ 3 ) ) ) ) |
28 |
26 27
|
anbi12d |
|- ( g = G -> ( ( a e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) /\ b e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) ) <-> ( a e. ( P ^m ( 0 ..^ 3 ) ) /\ b e. ( P ^m ( 0 ..^ 3 ) ) ) ) ) |
29 |
|
fveq2 |
|- ( g = G -> ( inA ` g ) = ( inA ` G ) ) |
30 |
29
|
breqd |
|- ( g = G -> ( x ( inA ` g ) <" ( b ` 0 ) ( b ` 1 ) ( b ` 2 ) "> <-> x ( inA ` G ) <" ( b ` 0 ) ( b ` 1 ) ( b ` 2 ) "> ) ) |
31 |
|
fveq2 |
|- ( g = G -> ( cgrA ` g ) = ( cgrA ` G ) ) |
32 |
31
|
breqd |
|- ( g = G -> ( <" ( a ` 0 ) ( a ` 1 ) ( a ` 2 ) "> ( cgrA ` g ) <" ( b ` 0 ) ( b ` 1 ) x "> <-> <" ( a ` 0 ) ( a ` 1 ) ( a ` 2 ) "> ( cgrA ` G ) <" ( b ` 0 ) ( b ` 1 ) x "> ) ) |
33 |
30 32
|
anbi12d |
|- ( g = G -> ( ( x ( inA ` g ) <" ( b ` 0 ) ( b ` 1 ) ( b ` 2 ) "> /\ <" ( a ` 0 ) ( a ` 1 ) ( a ` 2 ) "> ( cgrA ` g ) <" ( b ` 0 ) ( b ` 1 ) x "> ) <-> ( x ( inA ` G ) <" ( b ` 0 ) ( b ` 1 ) ( b ` 2 ) "> /\ <" ( a ` 0 ) ( a ` 1 ) ( a ` 2 ) "> ( cgrA ` G ) <" ( b ` 0 ) ( b ` 1 ) x "> ) ) ) |
34 |
24 33
|
rexeqbidv |
|- ( g = G -> ( E. x e. ( Base ` g ) ( x ( inA ` g ) <" ( b ` 0 ) ( b ` 1 ) ( b ` 2 ) "> /\ <" ( a ` 0 ) ( a ` 1 ) ( a ` 2 ) "> ( cgrA ` g ) <" ( b ` 0 ) ( b ` 1 ) x "> ) <-> E. x e. P ( x ( inA ` G ) <" ( b ` 0 ) ( b ` 1 ) ( b ` 2 ) "> /\ <" ( a ` 0 ) ( a ` 1 ) ( a ` 2 ) "> ( cgrA ` G ) <" ( b ` 0 ) ( b ` 1 ) x "> ) ) ) |
35 |
28 34
|
anbi12d |
|- ( g = G -> ( ( ( a e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) /\ b e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) ) /\ E. x e. ( Base ` g ) ( x ( inA ` g ) <" ( b ` 0 ) ( b ` 1 ) ( b ` 2 ) "> /\ <" ( a ` 0 ) ( a ` 1 ) ( a ` 2 ) "> ( cgrA ` g ) <" ( b ` 0 ) ( b ` 1 ) x "> ) ) <-> ( ( a e. ( P ^m ( 0 ..^ 3 ) ) /\ b e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P ( x ( inA ` G ) <" ( b ` 0 ) ( b ` 1 ) ( b ` 2 ) "> /\ <" ( a ` 0 ) ( a ` 1 ) ( a ` 2 ) "> ( cgrA ` G ) <" ( b ` 0 ) ( b ` 1 ) x "> ) ) ) ) |
36 |
35
|
opabbidv |
|- ( g = G -> { <. a , b >. | ( ( a e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) /\ b e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) ) /\ E. x e. ( Base ` g ) ( x ( inA ` g ) <" ( b ` 0 ) ( b ` 1 ) ( b ` 2 ) "> /\ <" ( a ` 0 ) ( a ` 1 ) ( a ` 2 ) "> ( cgrA ` g ) <" ( b ` 0 ) ( b ` 1 ) x "> ) ) } = { <. a , b >. | ( ( a e. ( P ^m ( 0 ..^ 3 ) ) /\ b e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P ( x ( inA ` G ) <" ( b ` 0 ) ( b ` 1 ) ( b ` 2 ) "> /\ <" ( a ` 0 ) ( a ` 1 ) ( a ` 2 ) "> ( cgrA ` G ) <" ( b ` 0 ) ( b ` 1 ) x "> ) ) } ) |
37 |
|
df-leag |
|- leA = ( g e. _V |-> { <. a , b >. | ( ( a e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) /\ b e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) ) /\ E. x e. ( Base ` g ) ( x ( inA ` g ) <" ( b ` 0 ) ( b ` 1 ) ( b ` 2 ) "> /\ <" ( a ` 0 ) ( a ` 1 ) ( a ` 2 ) "> ( cgrA ` g ) <" ( b ` 0 ) ( b ` 1 ) x "> ) ) } ) |
38 |
|
ovex |
|- ( P ^m ( 0 ..^ 3 ) ) e. _V |
39 |
38 38
|
xpex |
|- ( ( P ^m ( 0 ..^ 3 ) ) X. ( P ^m ( 0 ..^ 3 ) ) ) e. _V |
40 |
|
opabssxp |
|- { <. a , b >. | ( ( a e. ( P ^m ( 0 ..^ 3 ) ) /\ b e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P ( x ( inA ` G ) <" ( b ` 0 ) ( b ` 1 ) ( b ` 2 ) "> /\ <" ( a ` 0 ) ( a ` 1 ) ( a ` 2 ) "> ( cgrA ` G ) <" ( b ` 0 ) ( b ` 1 ) x "> ) ) } C_ ( ( P ^m ( 0 ..^ 3 ) ) X. ( P ^m ( 0 ..^ 3 ) ) ) |
41 |
39 40
|
ssexi |
|- { <. a , b >. | ( ( a e. ( P ^m ( 0 ..^ 3 ) ) /\ b e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P ( x ( inA ` G ) <" ( b ` 0 ) ( b ` 1 ) ( b ` 2 ) "> /\ <" ( a ` 0 ) ( a ` 1 ) ( a ` 2 ) "> ( cgrA ` G ) <" ( b ` 0 ) ( b ` 1 ) x "> ) ) } e. _V |
42 |
36 37 41
|
fvmpt |
|- ( G e. _V -> ( leA ` G ) = { <. a , b >. | ( ( a e. ( P ^m ( 0 ..^ 3 ) ) /\ b e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P ( x ( inA ` G ) <" ( b ` 0 ) ( b ` 1 ) ( b ` 2 ) "> /\ <" ( a ` 0 ) ( a ` 1 ) ( a ` 2 ) "> ( cgrA ` G ) <" ( b ` 0 ) ( b ` 1 ) x "> ) ) } ) |
43 |
2 22 42
|
3syl |
|- ( ph -> ( leA ` G ) = { <. a , b >. | ( ( a e. ( P ^m ( 0 ..^ 3 ) ) /\ b e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P ( x ( inA ` G ) <" ( b ` 0 ) ( b ` 1 ) ( b ` 2 ) "> /\ <" ( a ` 0 ) ( a ` 1 ) ( a ` 2 ) "> ( cgrA ` G ) <" ( b ` 0 ) ( b ` 1 ) x "> ) ) } ) |
44 |
43
|
breqd |
|- ( ph -> ( <" A B C "> ( leA ` G ) <" D E F "> <-> <" A B C "> { <. a , b >. | ( ( a e. ( P ^m ( 0 ..^ 3 ) ) /\ b e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P ( x ( inA ` G ) <" ( b ` 0 ) ( b ` 1 ) ( b ` 2 ) "> /\ <" ( a ` 0 ) ( a ` 1 ) ( a ` 2 ) "> ( cgrA ` G ) <" ( b ` 0 ) ( b ` 1 ) x "> ) ) } <" D E F "> ) ) |
45 |
|
simpr |
|- ( ( a = <" A B C "> /\ b = <" D E F "> ) -> b = <" D E F "> ) |
46 |
45
|
fveq1d |
|- ( ( a = <" A B C "> /\ b = <" D E F "> ) -> ( b ` 0 ) = ( <" D E F "> ` 0 ) ) |
47 |
45
|
fveq1d |
|- ( ( a = <" A B C "> /\ b = <" D E F "> ) -> ( b ` 1 ) = ( <" D E F "> ` 1 ) ) |
48 |
45
|
fveq1d |
|- ( ( a = <" A B C "> /\ b = <" D E F "> ) -> ( b ` 2 ) = ( <" D E F "> ` 2 ) ) |
49 |
46 47 48
|
s3eqd |
|- ( ( a = <" A B C "> /\ b = <" D E F "> ) -> <" ( b ` 0 ) ( b ` 1 ) ( b ` 2 ) "> = <" ( <" D E F "> ` 0 ) ( <" D E F "> ` 1 ) ( <" D E F "> ` 2 ) "> ) |
50 |
49
|
breq2d |
|- ( ( a = <" A B C "> /\ b = <" D E F "> ) -> ( x ( inA ` G ) <" ( b ` 0 ) ( b ` 1 ) ( b ` 2 ) "> <-> x ( inA ` G ) <" ( <" D E F "> ` 0 ) ( <" D E F "> ` 1 ) ( <" D E F "> ` 2 ) "> ) ) |
51 |
|
simpl |
|- ( ( a = <" A B C "> /\ b = <" D E F "> ) -> a = <" A B C "> ) |
52 |
51
|
fveq1d |
|- ( ( a = <" A B C "> /\ b = <" D E F "> ) -> ( a ` 0 ) = ( <" A B C "> ` 0 ) ) |
53 |
51
|
fveq1d |
|- ( ( a = <" A B C "> /\ b = <" D E F "> ) -> ( a ` 1 ) = ( <" A B C "> ` 1 ) ) |
54 |
51
|
fveq1d |
|- ( ( a = <" A B C "> /\ b = <" D E F "> ) -> ( a ` 2 ) = ( <" A B C "> ` 2 ) ) |
55 |
52 53 54
|
s3eqd |
|- ( ( a = <" A B C "> /\ b = <" D E F "> ) -> <" ( a ` 0 ) ( a ` 1 ) ( a ` 2 ) "> = <" ( <" A B C "> ` 0 ) ( <" A B C "> ` 1 ) ( <" A B C "> ` 2 ) "> ) |
56 |
|
eqidd |
|- ( ( a = <" A B C "> /\ b = <" D E F "> ) -> x = x ) |
57 |
46 47 56
|
s3eqd |
|- ( ( a = <" A B C "> /\ b = <" D E F "> ) -> <" ( b ` 0 ) ( b ` 1 ) x "> = <" ( <" D E F "> ` 0 ) ( <" D E F "> ` 1 ) x "> ) |
58 |
55 57
|
breq12d |
|- ( ( a = <" A B C "> /\ b = <" D E F "> ) -> ( <" ( a ` 0 ) ( a ` 1 ) ( a ` 2 ) "> ( cgrA ` G ) <" ( b ` 0 ) ( b ` 1 ) x "> <-> <" ( <" A B C "> ` 0 ) ( <" A B C "> ` 1 ) ( <" A B C "> ` 2 ) "> ( cgrA ` G ) <" ( <" D E F "> ` 0 ) ( <" D E F "> ` 1 ) x "> ) ) |
59 |
50 58
|
anbi12d |
|- ( ( a = <" A B C "> /\ b = <" D E F "> ) -> ( ( x ( inA ` G ) <" ( b ` 0 ) ( b ` 1 ) ( b ` 2 ) "> /\ <" ( a ` 0 ) ( a ` 1 ) ( a ` 2 ) "> ( cgrA ` G ) <" ( b ` 0 ) ( b ` 1 ) x "> ) <-> ( x ( inA ` G ) <" ( <" D E F "> ` 0 ) ( <" D E F "> ` 1 ) ( <" D E F "> ` 2 ) "> /\ <" ( <" A B C "> ` 0 ) ( <" A B C "> ` 1 ) ( <" A B C "> ` 2 ) "> ( cgrA ` G ) <" ( <" D E F "> ` 0 ) ( <" D E F "> ` 1 ) x "> ) ) ) |
60 |
59
|
rexbidv |
|- ( ( a = <" A B C "> /\ b = <" D E F "> ) -> ( E. x e. P ( x ( inA ` G ) <" ( b ` 0 ) ( b ` 1 ) ( b ` 2 ) "> /\ <" ( a ` 0 ) ( a ` 1 ) ( a ` 2 ) "> ( cgrA ` G ) <" ( b ` 0 ) ( b ` 1 ) x "> ) <-> E. x e. P ( x ( inA ` G ) <" ( <" D E F "> ` 0 ) ( <" D E F "> ` 1 ) ( <" D E F "> ` 2 ) "> /\ <" ( <" A B C "> ` 0 ) ( <" A B C "> ` 1 ) ( <" A B C "> ` 2 ) "> ( cgrA ` G ) <" ( <" D E F "> ` 0 ) ( <" D E F "> ` 1 ) x "> ) ) ) |
61 |
|
eqid |
|- { <. a , b >. | ( ( a e. ( P ^m ( 0 ..^ 3 ) ) /\ b e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P ( x ( inA ` G ) <" ( b ` 0 ) ( b ` 1 ) ( b ` 2 ) "> /\ <" ( a ` 0 ) ( a ` 1 ) ( a ` 2 ) "> ( cgrA ` G ) <" ( b ` 0 ) ( b ` 1 ) x "> ) ) } = { <. a , b >. | ( ( a e. ( P ^m ( 0 ..^ 3 ) ) /\ b e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P ( x ( inA ` G ) <" ( b ` 0 ) ( b ` 1 ) ( b ` 2 ) "> /\ <" ( a ` 0 ) ( a ` 1 ) ( a ` 2 ) "> ( cgrA ` G ) <" ( b ` 0 ) ( b ` 1 ) x "> ) ) } |
62 |
60 61
|
brab2a |
|- ( <" A B C "> { <. a , b >. | ( ( a e. ( P ^m ( 0 ..^ 3 ) ) /\ b e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P ( x ( inA ` G ) <" ( b ` 0 ) ( b ` 1 ) ( b ` 2 ) "> /\ <" ( a ` 0 ) ( a ` 1 ) ( a ` 2 ) "> ( cgrA ` G ) <" ( b ` 0 ) ( b ` 1 ) x "> ) ) } <" D E F "> <-> ( ( <" A B C "> e. ( P ^m ( 0 ..^ 3 ) ) /\ <" D E F "> e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P ( x ( inA ` G ) <" ( <" D E F "> ` 0 ) ( <" D E F "> ` 1 ) ( <" D E F "> ` 2 ) "> /\ <" ( <" A B C "> ` 0 ) ( <" A B C "> ` 1 ) ( <" A B C "> ` 2 ) "> ( cgrA ` G ) <" ( <" D E F "> ` 0 ) ( <" D E F "> ` 1 ) x "> ) ) ) |
63 |
62
|
a1i |
|- ( ph -> ( <" A B C "> { <. a , b >. | ( ( a e. ( P ^m ( 0 ..^ 3 ) ) /\ b e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P ( x ( inA ` G ) <" ( b ` 0 ) ( b ` 1 ) ( b ` 2 ) "> /\ <" ( a ` 0 ) ( a ` 1 ) ( a ` 2 ) "> ( cgrA ` G ) <" ( b ` 0 ) ( b ` 1 ) x "> ) ) } <" D E F "> <-> ( ( <" A B C "> e. ( P ^m ( 0 ..^ 3 ) ) /\ <" D E F "> e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P ( x ( inA ` G ) <" ( <" D E F "> ` 0 ) ( <" D E F "> ` 1 ) ( <" D E F "> ` 2 ) "> /\ <" ( <" A B C "> ` 0 ) ( <" A B C "> ` 1 ) ( <" A B C "> ` 2 ) "> ( cgrA ` G ) <" ( <" D E F "> ` 0 ) ( <" D E F "> ` 1 ) x "> ) ) ) ) |
64 |
|
s3fv0 |
|- ( D e. P -> ( <" D E F "> ` 0 ) = D ) |
65 |
6 64
|
syl |
|- ( ph -> ( <" D E F "> ` 0 ) = D ) |
66 |
|
s3fv1 |
|- ( E e. P -> ( <" D E F "> ` 1 ) = E ) |
67 |
7 66
|
syl |
|- ( ph -> ( <" D E F "> ` 1 ) = E ) |
68 |
|
s3fv2 |
|- ( F e. P -> ( <" D E F "> ` 2 ) = F ) |
69 |
8 68
|
syl |
|- ( ph -> ( <" D E F "> ` 2 ) = F ) |
70 |
65 67 69
|
s3eqd |
|- ( ph -> <" ( <" D E F "> ` 0 ) ( <" D E F "> ` 1 ) ( <" D E F "> ` 2 ) "> = <" D E F "> ) |
71 |
70
|
breq2d |
|- ( ph -> ( x ( inA ` G ) <" ( <" D E F "> ` 0 ) ( <" D E F "> ` 1 ) ( <" D E F "> ` 2 ) "> <-> x ( inA ` G ) <" D E F "> ) ) |
72 |
|
s3fv0 |
|- ( A e. P -> ( <" A B C "> ` 0 ) = A ) |
73 |
3 72
|
syl |
|- ( ph -> ( <" A B C "> ` 0 ) = A ) |
74 |
|
s3fv1 |
|- ( B e. P -> ( <" A B C "> ` 1 ) = B ) |
75 |
4 74
|
syl |
|- ( ph -> ( <" A B C "> ` 1 ) = B ) |
76 |
|
s3fv2 |
|- ( C e. P -> ( <" A B C "> ` 2 ) = C ) |
77 |
5 76
|
syl |
|- ( ph -> ( <" A B C "> ` 2 ) = C ) |
78 |
73 75 77
|
s3eqd |
|- ( ph -> <" ( <" A B C "> ` 0 ) ( <" A B C "> ` 1 ) ( <" A B C "> ` 2 ) "> = <" A B C "> ) |
79 |
|
eqidd |
|- ( ph -> x = x ) |
80 |
65 67 79
|
s3eqd |
|- ( ph -> <" ( <" D E F "> ` 0 ) ( <" D E F "> ` 1 ) x "> = <" D E x "> ) |
81 |
78 80
|
breq12d |
|- ( ph -> ( <" ( <" A B C "> ` 0 ) ( <" A B C "> ` 1 ) ( <" A B C "> ` 2 ) "> ( cgrA ` G ) <" ( <" D E F "> ` 0 ) ( <" D E F "> ` 1 ) x "> <-> <" A B C "> ( cgrA ` G ) <" D E x "> ) ) |
82 |
71 81
|
anbi12d |
|- ( ph -> ( ( x ( inA ` G ) <" ( <" D E F "> ` 0 ) ( <" D E F "> ` 1 ) ( <" D E F "> ` 2 ) "> /\ <" ( <" A B C "> ` 0 ) ( <" A B C "> ` 1 ) ( <" A B C "> ` 2 ) "> ( cgrA ` G ) <" ( <" D E F "> ` 0 ) ( <" D E F "> ` 1 ) x "> ) <-> ( x ( inA ` G ) <" D E F "> /\ <" A B C "> ( cgrA ` G ) <" D E x "> ) ) ) |
83 |
82
|
rexbidv |
|- ( ph -> ( E. x e. P ( x ( inA ` G ) <" ( <" D E F "> ` 0 ) ( <" D E F "> ` 1 ) ( <" D E F "> ` 2 ) "> /\ <" ( <" A B C "> ` 0 ) ( <" A B C "> ` 1 ) ( <" A B C "> ` 2 ) "> ( cgrA ` G ) <" ( <" D E F "> ` 0 ) ( <" D E F "> ` 1 ) x "> ) <-> E. x e. P ( x ( inA ` G ) <" D E F "> /\ <" A B C "> ( cgrA ` G ) <" D E x "> ) ) ) |
84 |
83
|
anbi2d |
|- ( ph -> ( ( ( <" A B C "> e. ( P ^m ( 0 ..^ 3 ) ) /\ <" D E F "> e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P ( x ( inA ` G ) <" ( <" D E F "> ` 0 ) ( <" D E F "> ` 1 ) ( <" D E F "> ` 2 ) "> /\ <" ( <" A B C "> ` 0 ) ( <" A B C "> ` 1 ) ( <" A B C "> ` 2 ) "> ( cgrA ` G ) <" ( <" D E F "> ` 0 ) ( <" D E F "> ` 1 ) x "> ) ) <-> ( ( <" A B C "> e. ( P ^m ( 0 ..^ 3 ) ) /\ <" D E F "> e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P ( x ( inA ` G ) <" D E F "> /\ <" A B C "> ( cgrA ` G ) <" D E x "> ) ) ) ) |
85 |
44 63 84
|
3bitrd |
|- ( ph -> ( <" A B C "> ( leA ` G ) <" D E F "> <-> ( ( <" A B C "> e. ( P ^m ( 0 ..^ 3 ) ) /\ <" D E F "> e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P ( x ( inA ` G ) <" D E F "> /\ <" A B C "> ( cgrA ` G ) <" D E x "> ) ) ) ) |
86 |
21 85
|
mpbirand |
|- ( ph -> ( <" A B C "> ( leA ` G ) <" D E F "> <-> E. x e. P ( x ( inA ` G ) <" D E F "> /\ <" A B C "> ( cgrA ` G ) <" D E x "> ) ) ) |