| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isleag.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | isleag.g |  |-  ( ph -> G e. TarskiG ) | 
						
							| 3 |  | isleag.a |  |-  ( ph -> A e. P ) | 
						
							| 4 |  | isleag.b |  |-  ( ph -> B e. P ) | 
						
							| 5 |  | isleag.c |  |-  ( ph -> C e. P ) | 
						
							| 6 |  | isleag.d |  |-  ( ph -> D e. P ) | 
						
							| 7 |  | isleag.e |  |-  ( ph -> E e. P ) | 
						
							| 8 |  | isleag.f |  |-  ( ph -> F e. P ) | 
						
							| 9 | 3 4 5 | s3cld |  |-  ( ph -> <" A B C "> e. Word P ) | 
						
							| 10 |  | s3len |  |-  ( # ` <" A B C "> ) = 3 | 
						
							| 11 | 1 | fvexi |  |-  P e. _V | 
						
							| 12 |  | 3nn0 |  |-  3 e. NN0 | 
						
							| 13 |  | wrdmap |  |-  ( ( P e. _V /\ 3 e. NN0 ) -> ( ( <" A B C "> e. Word P /\ ( # ` <" A B C "> ) = 3 ) <-> <" A B C "> e. ( P ^m ( 0 ..^ 3 ) ) ) ) | 
						
							| 14 | 11 12 13 | mp2an |  |-  ( ( <" A B C "> e. Word P /\ ( # ` <" A B C "> ) = 3 ) <-> <" A B C "> e. ( P ^m ( 0 ..^ 3 ) ) ) | 
						
							| 15 | 9 10 14 | sylanblc |  |-  ( ph -> <" A B C "> e. ( P ^m ( 0 ..^ 3 ) ) ) | 
						
							| 16 | 6 7 8 | s3cld |  |-  ( ph -> <" D E F "> e. Word P ) | 
						
							| 17 |  | s3len |  |-  ( # ` <" D E F "> ) = 3 | 
						
							| 18 |  | wrdmap |  |-  ( ( P e. _V /\ 3 e. NN0 ) -> ( ( <" D E F "> e. Word P /\ ( # ` <" D E F "> ) = 3 ) <-> <" D E F "> e. ( P ^m ( 0 ..^ 3 ) ) ) ) | 
						
							| 19 | 11 12 18 | mp2an |  |-  ( ( <" D E F "> e. Word P /\ ( # ` <" D E F "> ) = 3 ) <-> <" D E F "> e. ( P ^m ( 0 ..^ 3 ) ) ) | 
						
							| 20 | 16 17 19 | sylanblc |  |-  ( ph -> <" D E F "> e. ( P ^m ( 0 ..^ 3 ) ) ) | 
						
							| 21 | 15 20 | jca |  |-  ( ph -> ( <" A B C "> e. ( P ^m ( 0 ..^ 3 ) ) /\ <" D E F "> e. ( P ^m ( 0 ..^ 3 ) ) ) ) | 
						
							| 22 |  | elex |  |-  ( G e. TarskiG -> G e. _V ) | 
						
							| 23 |  | fveq2 |  |-  ( g = G -> ( Base ` g ) = ( Base ` G ) ) | 
						
							| 24 | 23 1 | eqtr4di |  |-  ( g = G -> ( Base ` g ) = P ) | 
						
							| 25 | 24 | oveq1d |  |-  ( g = G -> ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) = ( P ^m ( 0 ..^ 3 ) ) ) | 
						
							| 26 | 25 | eleq2d |  |-  ( g = G -> ( a e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) <-> a e. ( P ^m ( 0 ..^ 3 ) ) ) ) | 
						
							| 27 | 25 | eleq2d |  |-  ( g = G -> ( b e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) <-> b e. ( P ^m ( 0 ..^ 3 ) ) ) ) | 
						
							| 28 | 26 27 | anbi12d |  |-  ( g = G -> ( ( a e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) /\ b e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) ) <-> ( a e. ( P ^m ( 0 ..^ 3 ) ) /\ b e. ( P ^m ( 0 ..^ 3 ) ) ) ) ) | 
						
							| 29 |  | fveq2 |  |-  ( g = G -> ( inA ` g ) = ( inA ` G ) ) | 
						
							| 30 | 29 | breqd |  |-  ( g = G -> ( x ( inA ` g ) <" ( b ` 0 ) ( b ` 1 ) ( b ` 2 ) "> <-> x ( inA ` G ) <" ( b ` 0 ) ( b ` 1 ) ( b ` 2 ) "> ) ) | 
						
							| 31 |  | fveq2 |  |-  ( g = G -> ( cgrA ` g ) = ( cgrA ` G ) ) | 
						
							| 32 | 31 | breqd |  |-  ( g = G -> ( <" ( a ` 0 ) ( a ` 1 ) ( a ` 2 ) "> ( cgrA ` g ) <" ( b ` 0 ) ( b ` 1 ) x "> <-> <" ( a ` 0 ) ( a ` 1 ) ( a ` 2 ) "> ( cgrA ` G ) <" ( b ` 0 ) ( b ` 1 ) x "> ) ) | 
						
							| 33 | 30 32 | anbi12d |  |-  ( g = G -> ( ( x ( inA ` g ) <" ( b ` 0 ) ( b ` 1 ) ( b ` 2 ) "> /\ <" ( a ` 0 ) ( a ` 1 ) ( a ` 2 ) "> ( cgrA ` g ) <" ( b ` 0 ) ( b ` 1 ) x "> ) <-> ( x ( inA ` G ) <" ( b ` 0 ) ( b ` 1 ) ( b ` 2 ) "> /\ <" ( a ` 0 ) ( a ` 1 ) ( a ` 2 ) "> ( cgrA ` G ) <" ( b ` 0 ) ( b ` 1 ) x "> ) ) ) | 
						
							| 34 | 24 33 | rexeqbidv |  |-  ( g = G -> ( E. x e. ( Base ` g ) ( x ( inA ` g ) <" ( b ` 0 ) ( b ` 1 ) ( b ` 2 ) "> /\ <" ( a ` 0 ) ( a ` 1 ) ( a ` 2 ) "> ( cgrA ` g ) <" ( b ` 0 ) ( b ` 1 ) x "> ) <-> E. x e. P ( x ( inA ` G ) <" ( b ` 0 ) ( b ` 1 ) ( b ` 2 ) "> /\ <" ( a ` 0 ) ( a ` 1 ) ( a ` 2 ) "> ( cgrA ` G ) <" ( b ` 0 ) ( b ` 1 ) x "> ) ) ) | 
						
							| 35 | 28 34 | anbi12d |  |-  ( g = G -> ( ( ( a e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) /\ b e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) ) /\ E. x e. ( Base ` g ) ( x ( inA ` g ) <" ( b ` 0 ) ( b ` 1 ) ( b ` 2 ) "> /\ <" ( a ` 0 ) ( a ` 1 ) ( a ` 2 ) "> ( cgrA ` g ) <" ( b ` 0 ) ( b ` 1 ) x "> ) ) <-> ( ( a e. ( P ^m ( 0 ..^ 3 ) ) /\ b e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P ( x ( inA ` G ) <" ( b ` 0 ) ( b ` 1 ) ( b ` 2 ) "> /\ <" ( a ` 0 ) ( a ` 1 ) ( a ` 2 ) "> ( cgrA ` G ) <" ( b ` 0 ) ( b ` 1 ) x "> ) ) ) ) | 
						
							| 36 | 35 | opabbidv |  |-  ( g = G -> { <. a , b >. | ( ( a e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) /\ b e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) ) /\ E. x e. ( Base ` g ) ( x ( inA ` g ) <" ( b ` 0 ) ( b ` 1 ) ( b ` 2 ) "> /\ <" ( a ` 0 ) ( a ` 1 ) ( a ` 2 ) "> ( cgrA ` g ) <" ( b ` 0 ) ( b ` 1 ) x "> ) ) } = { <. a , b >. | ( ( a e. ( P ^m ( 0 ..^ 3 ) ) /\ b e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P ( x ( inA ` G ) <" ( b ` 0 ) ( b ` 1 ) ( b ` 2 ) "> /\ <" ( a ` 0 ) ( a ` 1 ) ( a ` 2 ) "> ( cgrA ` G ) <" ( b ` 0 ) ( b ` 1 ) x "> ) ) } ) | 
						
							| 37 |  | df-leag |  |-  leA = ( g e. _V |-> { <. a , b >. | ( ( a e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) /\ b e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) ) /\ E. x e. ( Base ` g ) ( x ( inA ` g ) <" ( b ` 0 ) ( b ` 1 ) ( b ` 2 ) "> /\ <" ( a ` 0 ) ( a ` 1 ) ( a ` 2 ) "> ( cgrA ` g ) <" ( b ` 0 ) ( b ` 1 ) x "> ) ) } ) | 
						
							| 38 |  | ovex |  |-  ( P ^m ( 0 ..^ 3 ) ) e. _V | 
						
							| 39 | 38 38 | xpex |  |-  ( ( P ^m ( 0 ..^ 3 ) ) X. ( P ^m ( 0 ..^ 3 ) ) ) e. _V | 
						
							| 40 |  | opabssxp |  |-  { <. a , b >. | ( ( a e. ( P ^m ( 0 ..^ 3 ) ) /\ b e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P ( x ( inA ` G ) <" ( b ` 0 ) ( b ` 1 ) ( b ` 2 ) "> /\ <" ( a ` 0 ) ( a ` 1 ) ( a ` 2 ) "> ( cgrA ` G ) <" ( b ` 0 ) ( b ` 1 ) x "> ) ) } C_ ( ( P ^m ( 0 ..^ 3 ) ) X. ( P ^m ( 0 ..^ 3 ) ) ) | 
						
							| 41 | 39 40 | ssexi |  |-  { <. a , b >. | ( ( a e. ( P ^m ( 0 ..^ 3 ) ) /\ b e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P ( x ( inA ` G ) <" ( b ` 0 ) ( b ` 1 ) ( b ` 2 ) "> /\ <" ( a ` 0 ) ( a ` 1 ) ( a ` 2 ) "> ( cgrA ` G ) <" ( b ` 0 ) ( b ` 1 ) x "> ) ) } e. _V | 
						
							| 42 | 36 37 41 | fvmpt |  |-  ( G e. _V -> ( leA ` G ) = { <. a , b >. | ( ( a e. ( P ^m ( 0 ..^ 3 ) ) /\ b e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P ( x ( inA ` G ) <" ( b ` 0 ) ( b ` 1 ) ( b ` 2 ) "> /\ <" ( a ` 0 ) ( a ` 1 ) ( a ` 2 ) "> ( cgrA ` G ) <" ( b ` 0 ) ( b ` 1 ) x "> ) ) } ) | 
						
							| 43 | 2 22 42 | 3syl |  |-  ( ph -> ( leA ` G ) = { <. a , b >. | ( ( a e. ( P ^m ( 0 ..^ 3 ) ) /\ b e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P ( x ( inA ` G ) <" ( b ` 0 ) ( b ` 1 ) ( b ` 2 ) "> /\ <" ( a ` 0 ) ( a ` 1 ) ( a ` 2 ) "> ( cgrA ` G ) <" ( b ` 0 ) ( b ` 1 ) x "> ) ) } ) | 
						
							| 44 | 43 | breqd |  |-  ( ph -> ( <" A B C "> ( leA ` G ) <" D E F "> <-> <" A B C "> { <. a , b >. | ( ( a e. ( P ^m ( 0 ..^ 3 ) ) /\ b e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P ( x ( inA ` G ) <" ( b ` 0 ) ( b ` 1 ) ( b ` 2 ) "> /\ <" ( a ` 0 ) ( a ` 1 ) ( a ` 2 ) "> ( cgrA ` G ) <" ( b ` 0 ) ( b ` 1 ) x "> ) ) } <" D E F "> ) ) | 
						
							| 45 |  | simpr |  |-  ( ( a = <" A B C "> /\ b = <" D E F "> ) -> b = <" D E F "> ) | 
						
							| 46 | 45 | fveq1d |  |-  ( ( a = <" A B C "> /\ b = <" D E F "> ) -> ( b ` 0 ) = ( <" D E F "> ` 0 ) ) | 
						
							| 47 | 45 | fveq1d |  |-  ( ( a = <" A B C "> /\ b = <" D E F "> ) -> ( b ` 1 ) = ( <" D E F "> ` 1 ) ) | 
						
							| 48 | 45 | fveq1d |  |-  ( ( a = <" A B C "> /\ b = <" D E F "> ) -> ( b ` 2 ) = ( <" D E F "> ` 2 ) ) | 
						
							| 49 | 46 47 48 | s3eqd |  |-  ( ( a = <" A B C "> /\ b = <" D E F "> ) -> <" ( b ` 0 ) ( b ` 1 ) ( b ` 2 ) "> = <" ( <" D E F "> ` 0 ) ( <" D E F "> ` 1 ) ( <" D E F "> ` 2 ) "> ) | 
						
							| 50 | 49 | breq2d |  |-  ( ( a = <" A B C "> /\ b = <" D E F "> ) -> ( x ( inA ` G ) <" ( b ` 0 ) ( b ` 1 ) ( b ` 2 ) "> <-> x ( inA ` G ) <" ( <" D E F "> ` 0 ) ( <" D E F "> ` 1 ) ( <" D E F "> ` 2 ) "> ) ) | 
						
							| 51 |  | simpl |  |-  ( ( a = <" A B C "> /\ b = <" D E F "> ) -> a = <" A B C "> ) | 
						
							| 52 | 51 | fveq1d |  |-  ( ( a = <" A B C "> /\ b = <" D E F "> ) -> ( a ` 0 ) = ( <" A B C "> ` 0 ) ) | 
						
							| 53 | 51 | fveq1d |  |-  ( ( a = <" A B C "> /\ b = <" D E F "> ) -> ( a ` 1 ) = ( <" A B C "> ` 1 ) ) | 
						
							| 54 | 51 | fveq1d |  |-  ( ( a = <" A B C "> /\ b = <" D E F "> ) -> ( a ` 2 ) = ( <" A B C "> ` 2 ) ) | 
						
							| 55 | 52 53 54 | s3eqd |  |-  ( ( a = <" A B C "> /\ b = <" D E F "> ) -> <" ( a ` 0 ) ( a ` 1 ) ( a ` 2 ) "> = <" ( <" A B C "> ` 0 ) ( <" A B C "> ` 1 ) ( <" A B C "> ` 2 ) "> ) | 
						
							| 56 |  | eqidd |  |-  ( ( a = <" A B C "> /\ b = <" D E F "> ) -> x = x ) | 
						
							| 57 | 46 47 56 | s3eqd |  |-  ( ( a = <" A B C "> /\ b = <" D E F "> ) -> <" ( b ` 0 ) ( b ` 1 ) x "> = <" ( <" D E F "> ` 0 ) ( <" D E F "> ` 1 ) x "> ) | 
						
							| 58 | 55 57 | breq12d |  |-  ( ( a = <" A B C "> /\ b = <" D E F "> ) -> ( <" ( a ` 0 ) ( a ` 1 ) ( a ` 2 ) "> ( cgrA ` G ) <" ( b ` 0 ) ( b ` 1 ) x "> <-> <" ( <" A B C "> ` 0 ) ( <" A B C "> ` 1 ) ( <" A B C "> ` 2 ) "> ( cgrA ` G ) <" ( <" D E F "> ` 0 ) ( <" D E F "> ` 1 ) x "> ) ) | 
						
							| 59 | 50 58 | anbi12d |  |-  ( ( a = <" A B C "> /\ b = <" D E F "> ) -> ( ( x ( inA ` G ) <" ( b ` 0 ) ( b ` 1 ) ( b ` 2 ) "> /\ <" ( a ` 0 ) ( a ` 1 ) ( a ` 2 ) "> ( cgrA ` G ) <" ( b ` 0 ) ( b ` 1 ) x "> ) <-> ( x ( inA ` G ) <" ( <" D E F "> ` 0 ) ( <" D E F "> ` 1 ) ( <" D E F "> ` 2 ) "> /\ <" ( <" A B C "> ` 0 ) ( <" A B C "> ` 1 ) ( <" A B C "> ` 2 ) "> ( cgrA ` G ) <" ( <" D E F "> ` 0 ) ( <" D E F "> ` 1 ) x "> ) ) ) | 
						
							| 60 | 59 | rexbidv |  |-  ( ( a = <" A B C "> /\ b = <" D E F "> ) -> ( E. x e. P ( x ( inA ` G ) <" ( b ` 0 ) ( b ` 1 ) ( b ` 2 ) "> /\ <" ( a ` 0 ) ( a ` 1 ) ( a ` 2 ) "> ( cgrA ` G ) <" ( b ` 0 ) ( b ` 1 ) x "> ) <-> E. x e. P ( x ( inA ` G ) <" ( <" D E F "> ` 0 ) ( <" D E F "> ` 1 ) ( <" D E F "> ` 2 ) "> /\ <" ( <" A B C "> ` 0 ) ( <" A B C "> ` 1 ) ( <" A B C "> ` 2 ) "> ( cgrA ` G ) <" ( <" D E F "> ` 0 ) ( <" D E F "> ` 1 ) x "> ) ) ) | 
						
							| 61 |  | eqid |  |-  { <. a , b >. | ( ( a e. ( P ^m ( 0 ..^ 3 ) ) /\ b e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P ( x ( inA ` G ) <" ( b ` 0 ) ( b ` 1 ) ( b ` 2 ) "> /\ <" ( a ` 0 ) ( a ` 1 ) ( a ` 2 ) "> ( cgrA ` G ) <" ( b ` 0 ) ( b ` 1 ) x "> ) ) } = { <. a , b >. | ( ( a e. ( P ^m ( 0 ..^ 3 ) ) /\ b e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P ( x ( inA ` G ) <" ( b ` 0 ) ( b ` 1 ) ( b ` 2 ) "> /\ <" ( a ` 0 ) ( a ` 1 ) ( a ` 2 ) "> ( cgrA ` G ) <" ( b ` 0 ) ( b ` 1 ) x "> ) ) } | 
						
							| 62 | 60 61 | brab2a |  |-  ( <" A B C "> { <. a , b >. | ( ( a e. ( P ^m ( 0 ..^ 3 ) ) /\ b e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P ( x ( inA ` G ) <" ( b ` 0 ) ( b ` 1 ) ( b ` 2 ) "> /\ <" ( a ` 0 ) ( a ` 1 ) ( a ` 2 ) "> ( cgrA ` G ) <" ( b ` 0 ) ( b ` 1 ) x "> ) ) } <" D E F "> <-> ( ( <" A B C "> e. ( P ^m ( 0 ..^ 3 ) ) /\ <" D E F "> e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P ( x ( inA ` G ) <" ( <" D E F "> ` 0 ) ( <" D E F "> ` 1 ) ( <" D E F "> ` 2 ) "> /\ <" ( <" A B C "> ` 0 ) ( <" A B C "> ` 1 ) ( <" A B C "> ` 2 ) "> ( cgrA ` G ) <" ( <" D E F "> ` 0 ) ( <" D E F "> ` 1 ) x "> ) ) ) | 
						
							| 63 | 62 | a1i |  |-  ( ph -> ( <" A B C "> { <. a , b >. | ( ( a e. ( P ^m ( 0 ..^ 3 ) ) /\ b e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P ( x ( inA ` G ) <" ( b ` 0 ) ( b ` 1 ) ( b ` 2 ) "> /\ <" ( a ` 0 ) ( a ` 1 ) ( a ` 2 ) "> ( cgrA ` G ) <" ( b ` 0 ) ( b ` 1 ) x "> ) ) } <" D E F "> <-> ( ( <" A B C "> e. ( P ^m ( 0 ..^ 3 ) ) /\ <" D E F "> e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P ( x ( inA ` G ) <" ( <" D E F "> ` 0 ) ( <" D E F "> ` 1 ) ( <" D E F "> ` 2 ) "> /\ <" ( <" A B C "> ` 0 ) ( <" A B C "> ` 1 ) ( <" A B C "> ` 2 ) "> ( cgrA ` G ) <" ( <" D E F "> ` 0 ) ( <" D E F "> ` 1 ) x "> ) ) ) ) | 
						
							| 64 |  | s3fv0 |  |-  ( D e. P -> ( <" D E F "> ` 0 ) = D ) | 
						
							| 65 | 6 64 | syl |  |-  ( ph -> ( <" D E F "> ` 0 ) = D ) | 
						
							| 66 |  | s3fv1 |  |-  ( E e. P -> ( <" D E F "> ` 1 ) = E ) | 
						
							| 67 | 7 66 | syl |  |-  ( ph -> ( <" D E F "> ` 1 ) = E ) | 
						
							| 68 |  | s3fv2 |  |-  ( F e. P -> ( <" D E F "> ` 2 ) = F ) | 
						
							| 69 | 8 68 | syl |  |-  ( ph -> ( <" D E F "> ` 2 ) = F ) | 
						
							| 70 | 65 67 69 | s3eqd |  |-  ( ph -> <" ( <" D E F "> ` 0 ) ( <" D E F "> ` 1 ) ( <" D E F "> ` 2 ) "> = <" D E F "> ) | 
						
							| 71 | 70 | breq2d |  |-  ( ph -> ( x ( inA ` G ) <" ( <" D E F "> ` 0 ) ( <" D E F "> ` 1 ) ( <" D E F "> ` 2 ) "> <-> x ( inA ` G ) <" D E F "> ) ) | 
						
							| 72 |  | s3fv0 |  |-  ( A e. P -> ( <" A B C "> ` 0 ) = A ) | 
						
							| 73 | 3 72 | syl |  |-  ( ph -> ( <" A B C "> ` 0 ) = A ) | 
						
							| 74 |  | s3fv1 |  |-  ( B e. P -> ( <" A B C "> ` 1 ) = B ) | 
						
							| 75 | 4 74 | syl |  |-  ( ph -> ( <" A B C "> ` 1 ) = B ) | 
						
							| 76 |  | s3fv2 |  |-  ( C e. P -> ( <" A B C "> ` 2 ) = C ) | 
						
							| 77 | 5 76 | syl |  |-  ( ph -> ( <" A B C "> ` 2 ) = C ) | 
						
							| 78 | 73 75 77 | s3eqd |  |-  ( ph -> <" ( <" A B C "> ` 0 ) ( <" A B C "> ` 1 ) ( <" A B C "> ` 2 ) "> = <" A B C "> ) | 
						
							| 79 |  | eqidd |  |-  ( ph -> x = x ) | 
						
							| 80 | 65 67 79 | s3eqd |  |-  ( ph -> <" ( <" D E F "> ` 0 ) ( <" D E F "> ` 1 ) x "> = <" D E x "> ) | 
						
							| 81 | 78 80 | breq12d |  |-  ( ph -> ( <" ( <" A B C "> ` 0 ) ( <" A B C "> ` 1 ) ( <" A B C "> ` 2 ) "> ( cgrA ` G ) <" ( <" D E F "> ` 0 ) ( <" D E F "> ` 1 ) x "> <-> <" A B C "> ( cgrA ` G ) <" D E x "> ) ) | 
						
							| 82 | 71 81 | anbi12d |  |-  ( ph -> ( ( x ( inA ` G ) <" ( <" D E F "> ` 0 ) ( <" D E F "> ` 1 ) ( <" D E F "> ` 2 ) "> /\ <" ( <" A B C "> ` 0 ) ( <" A B C "> ` 1 ) ( <" A B C "> ` 2 ) "> ( cgrA ` G ) <" ( <" D E F "> ` 0 ) ( <" D E F "> ` 1 ) x "> ) <-> ( x ( inA ` G ) <" D E F "> /\ <" A B C "> ( cgrA ` G ) <" D E x "> ) ) ) | 
						
							| 83 | 82 | rexbidv |  |-  ( ph -> ( E. x e. P ( x ( inA ` G ) <" ( <" D E F "> ` 0 ) ( <" D E F "> ` 1 ) ( <" D E F "> ` 2 ) "> /\ <" ( <" A B C "> ` 0 ) ( <" A B C "> ` 1 ) ( <" A B C "> ` 2 ) "> ( cgrA ` G ) <" ( <" D E F "> ` 0 ) ( <" D E F "> ` 1 ) x "> ) <-> E. x e. P ( x ( inA ` G ) <" D E F "> /\ <" A B C "> ( cgrA ` G ) <" D E x "> ) ) ) | 
						
							| 84 | 83 | anbi2d |  |-  ( ph -> ( ( ( <" A B C "> e. ( P ^m ( 0 ..^ 3 ) ) /\ <" D E F "> e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P ( x ( inA ` G ) <" ( <" D E F "> ` 0 ) ( <" D E F "> ` 1 ) ( <" D E F "> ` 2 ) "> /\ <" ( <" A B C "> ` 0 ) ( <" A B C "> ` 1 ) ( <" A B C "> ` 2 ) "> ( cgrA ` G ) <" ( <" D E F "> ` 0 ) ( <" D E F "> ` 1 ) x "> ) ) <-> ( ( <" A B C "> e. ( P ^m ( 0 ..^ 3 ) ) /\ <" D E F "> e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P ( x ( inA ` G ) <" D E F "> /\ <" A B C "> ( cgrA ` G ) <" D E x "> ) ) ) ) | 
						
							| 85 | 44 63 84 | 3bitrd |  |-  ( ph -> ( <" A B C "> ( leA ` G ) <" D E F "> <-> ( ( <" A B C "> e. ( P ^m ( 0 ..^ 3 ) ) /\ <" D E F "> e. ( P ^m ( 0 ..^ 3 ) ) ) /\ E. x e. P ( x ( inA ` G ) <" D E F "> /\ <" A B C "> ( cgrA ` G ) <" D E x "> ) ) ) ) | 
						
							| 86 | 21 85 | mpbirand |  |-  ( ph -> ( <" A B C "> ( leA ` G ) <" D E F "> <-> E. x e. P ( x ( inA ` G ) <" D E F "> /\ <" A B C "> ( cgrA ` G ) <" D E x "> ) ) ) |