Step |
Hyp |
Ref |
Expression |
1 |
|
isleag.p |
|- P = ( Base ` G ) |
2 |
|
isleag.g |
|- ( ph -> G e. TarskiG ) |
3 |
|
isleag.a |
|- ( ph -> A e. P ) |
4 |
|
isleag.b |
|- ( ph -> B e. P ) |
5 |
|
isleag.c |
|- ( ph -> C e. P ) |
6 |
|
isleag.d |
|- ( ph -> D e. P ) |
7 |
|
isleag.e |
|- ( ph -> E e. P ) |
8 |
|
isleag.f |
|- ( ph -> F e. P ) |
9 |
|
isleagd.s |
|- .<_ = ( leA ` G ) |
10 |
|
isleagd.x |
|- ( ph -> X e. P ) |
11 |
|
isleagd.1 |
|- ( ph -> X ( inA ` G ) <" D E F "> ) |
12 |
|
isleagd.2 |
|- ( ph -> <" A B C "> ( cgrA ` G ) <" D E X "> ) |
13 |
9
|
eqcomi |
|- ( leA ` G ) = .<_ |
14 |
13
|
a1i |
|- ( ph -> ( leA ` G ) = .<_ ) |
15 |
|
simpr |
|- ( ( ph /\ x = X ) -> x = X ) |
16 |
15
|
breq1d |
|- ( ( ph /\ x = X ) -> ( x ( inA ` G ) <" D E F "> <-> X ( inA ` G ) <" D E F "> ) ) |
17 |
|
eqidd |
|- ( ( ph /\ x = X ) -> D = D ) |
18 |
|
eqidd |
|- ( ( ph /\ x = X ) -> E = E ) |
19 |
17 18 15
|
s3eqd |
|- ( ( ph /\ x = X ) -> <" D E x "> = <" D E X "> ) |
20 |
19
|
breq2d |
|- ( ( ph /\ x = X ) -> ( <" A B C "> ( cgrA ` G ) <" D E x "> <-> <" A B C "> ( cgrA ` G ) <" D E X "> ) ) |
21 |
16 20
|
anbi12d |
|- ( ( ph /\ x = X ) -> ( ( x ( inA ` G ) <" D E F "> /\ <" A B C "> ( cgrA ` G ) <" D E x "> ) <-> ( X ( inA ` G ) <" D E F "> /\ <" A B C "> ( cgrA ` G ) <" D E X "> ) ) ) |
22 |
11 12
|
jca |
|- ( ph -> ( X ( inA ` G ) <" D E F "> /\ <" A B C "> ( cgrA ` G ) <" D E X "> ) ) |
23 |
10 21 22
|
rspcedvd |
|- ( ph -> E. x e. P ( x ( inA ` G ) <" D E F "> /\ <" A B C "> ( cgrA ` G ) <" D E x "> ) ) |
24 |
1 2 3 4 5 6 7 8
|
isleag |
|- ( ph -> ( <" A B C "> ( leA ` G ) <" D E F "> <-> E. x e. P ( x ( inA ` G ) <" D E F "> /\ <" A B C "> ( cgrA ` G ) <" D E x "> ) ) ) |
25 |
23 24
|
mpbird |
|- ( ph -> <" A B C "> ( leA ` G ) <" D E F "> ) |
26 |
14 25
|
breqdi |
|- ( ph -> <" A B C "> .<_ <" D E F "> ) |