Metamath Proof Explorer


Theorem isleagd

Description: Sufficient condition for "less than" angle relation, deduction version (Contributed by Thierry Arnoux, 12-Oct-2020)

Ref Expression
Hypotheses isleag.p
|- P = ( Base ` G )
isleag.g
|- ( ph -> G e. TarskiG )
isleag.a
|- ( ph -> A e. P )
isleag.b
|- ( ph -> B e. P )
isleag.c
|- ( ph -> C e. P )
isleag.d
|- ( ph -> D e. P )
isleag.e
|- ( ph -> E e. P )
isleag.f
|- ( ph -> F e. P )
isleagd.s
|- .<_ = ( leA ` G )
isleagd.x
|- ( ph -> X e. P )
isleagd.1
|- ( ph -> X ( inA ` G ) <" D E F "> )
isleagd.2
|- ( ph -> <" A B C "> ( cgrA ` G ) <" D E X "> )
Assertion isleagd
|- ( ph -> <" A B C "> .<_ <" D E F "> )

Proof

Step Hyp Ref Expression
1 isleag.p
 |-  P = ( Base ` G )
2 isleag.g
 |-  ( ph -> G e. TarskiG )
3 isleag.a
 |-  ( ph -> A e. P )
4 isleag.b
 |-  ( ph -> B e. P )
5 isleag.c
 |-  ( ph -> C e. P )
6 isleag.d
 |-  ( ph -> D e. P )
7 isleag.e
 |-  ( ph -> E e. P )
8 isleag.f
 |-  ( ph -> F e. P )
9 isleagd.s
 |-  .<_ = ( leA ` G )
10 isleagd.x
 |-  ( ph -> X e. P )
11 isleagd.1
 |-  ( ph -> X ( inA ` G ) <" D E F "> )
12 isleagd.2
 |-  ( ph -> <" A B C "> ( cgrA ` G ) <" D E X "> )
13 9 eqcomi
 |-  ( leA ` G ) = .<_
14 13 a1i
 |-  ( ph -> ( leA ` G ) = .<_ )
15 simpr
 |-  ( ( ph /\ x = X ) -> x = X )
16 15 breq1d
 |-  ( ( ph /\ x = X ) -> ( x ( inA ` G ) <" D E F "> <-> X ( inA ` G ) <" D E F "> ) )
17 eqidd
 |-  ( ( ph /\ x = X ) -> D = D )
18 eqidd
 |-  ( ( ph /\ x = X ) -> E = E )
19 17 18 15 s3eqd
 |-  ( ( ph /\ x = X ) -> <" D E x "> = <" D E X "> )
20 19 breq2d
 |-  ( ( ph /\ x = X ) -> ( <" A B C "> ( cgrA ` G ) <" D E x "> <-> <" A B C "> ( cgrA ` G ) <" D E X "> ) )
21 16 20 anbi12d
 |-  ( ( ph /\ x = X ) -> ( ( x ( inA ` G ) <" D E F "> /\ <" A B C "> ( cgrA ` G ) <" D E x "> ) <-> ( X ( inA ` G ) <" D E F "> /\ <" A B C "> ( cgrA ` G ) <" D E X "> ) ) )
22 11 12 jca
 |-  ( ph -> ( X ( inA ` G ) <" D E F "> /\ <" A B C "> ( cgrA ` G ) <" D E X "> ) )
23 10 21 22 rspcedvd
 |-  ( ph -> E. x e. P ( x ( inA ` G ) <" D E F "> /\ <" A B C "> ( cgrA ` G ) <" D E x "> ) )
24 1 2 3 4 5 6 7 8 isleag
 |-  ( ph -> ( <" A B C "> ( leA ` G ) <" D E F "> <-> E. x e. P ( x ( inA ` G ) <" D E F "> /\ <" A B C "> ( cgrA ` G ) <" D E x "> ) ) )
25 23 24 mpbird
 |-  ( ph -> <" A B C "> ( leA ` G ) <" D E F "> )
26 14 25 breqdi
 |-  ( ph -> <" A B C "> .<_ <" D E F "> )