| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isleag.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | isleag.g |  |-  ( ph -> G e. TarskiG ) | 
						
							| 3 |  | isleag.a |  |-  ( ph -> A e. P ) | 
						
							| 4 |  | isleag.b |  |-  ( ph -> B e. P ) | 
						
							| 5 |  | isleag.c |  |-  ( ph -> C e. P ) | 
						
							| 6 |  | isleag.d |  |-  ( ph -> D e. P ) | 
						
							| 7 |  | isleag.e |  |-  ( ph -> E e. P ) | 
						
							| 8 |  | isleag.f |  |-  ( ph -> F e. P ) | 
						
							| 9 |  | leagne.1 |  |-  ( ph -> <" A B C "> ( leA ` G ) <" D E F "> ) | 
						
							| 10 |  | eqid |  |-  ( Itv ` G ) = ( Itv ` G ) | 
						
							| 11 |  | eqid |  |-  ( hlG ` G ) = ( hlG ` G ) | 
						
							| 12 | 2 | ad2antrr |  |-  ( ( ( ph /\ x e. P ) /\ ( x ( inA ` G ) <" D E F "> /\ <" A B C "> ( cgrA ` G ) <" D E x "> ) ) -> G e. TarskiG ) | 
						
							| 13 | 3 | ad2antrr |  |-  ( ( ( ph /\ x e. P ) /\ ( x ( inA ` G ) <" D E F "> /\ <" A B C "> ( cgrA ` G ) <" D E x "> ) ) -> A e. P ) | 
						
							| 14 | 4 | ad2antrr |  |-  ( ( ( ph /\ x e. P ) /\ ( x ( inA ` G ) <" D E F "> /\ <" A B C "> ( cgrA ` G ) <" D E x "> ) ) -> B e. P ) | 
						
							| 15 | 5 | ad2antrr |  |-  ( ( ( ph /\ x e. P ) /\ ( x ( inA ` G ) <" D E F "> /\ <" A B C "> ( cgrA ` G ) <" D E x "> ) ) -> C e. P ) | 
						
							| 16 | 6 | ad2antrr |  |-  ( ( ( ph /\ x e. P ) /\ ( x ( inA ` G ) <" D E F "> /\ <" A B C "> ( cgrA ` G ) <" D E x "> ) ) -> D e. P ) | 
						
							| 17 | 7 | ad2antrr |  |-  ( ( ( ph /\ x e. P ) /\ ( x ( inA ` G ) <" D E F "> /\ <" A B C "> ( cgrA ` G ) <" D E x "> ) ) -> E e. P ) | 
						
							| 18 |  | simplr |  |-  ( ( ( ph /\ x e. P ) /\ ( x ( inA ` G ) <" D E F "> /\ <" A B C "> ( cgrA ` G ) <" D E x "> ) ) -> x e. P ) | 
						
							| 19 |  | simprr |  |-  ( ( ( ph /\ x e. P ) /\ ( x ( inA ` G ) <" D E F "> /\ <" A B C "> ( cgrA ` G ) <" D E x "> ) ) -> <" A B C "> ( cgrA ` G ) <" D E x "> ) | 
						
							| 20 | 1 10 11 12 13 14 15 16 17 18 19 | cgrane1 |  |-  ( ( ( ph /\ x e. P ) /\ ( x ( inA ` G ) <" D E F "> /\ <" A B C "> ( cgrA ` G ) <" D E x "> ) ) -> A =/= B ) | 
						
							| 21 | 1 2 3 4 5 6 7 8 | isleag |  |-  ( ph -> ( <" A B C "> ( leA ` G ) <" D E F "> <-> E. x e. P ( x ( inA ` G ) <" D E F "> /\ <" A B C "> ( cgrA ` G ) <" D E x "> ) ) ) | 
						
							| 22 | 9 21 | mpbid |  |-  ( ph -> E. x e. P ( x ( inA ` G ) <" D E F "> /\ <" A B C "> ( cgrA ` G ) <" D E x "> ) ) | 
						
							| 23 | 20 22 | r19.29a |  |-  ( ph -> A =/= B ) |