Metamath Proof Explorer


Theorem isleagd

Description: Sufficient condition for "less than" angle relation, deduction version (Contributed by Thierry Arnoux, 12-Oct-2020)

Ref Expression
Hypotheses isleag.p P=BaseG
isleag.g φG𝒢Tarski
isleag.a φAP
isleag.b φBP
isleag.c φCP
isleag.d φDP
isleag.e φEP
isleag.f φFP
isleagd.s ˙=𝒢G
isleagd.x φXP
isleagd.1 φX𝒢G⟨“DEF”⟩
isleagd.2 φ⟨“ABC”⟩𝒢G⟨“DEX”⟩
Assertion isleagd φ⟨“ABC”⟩˙⟨“DEF”⟩

Proof

Step Hyp Ref Expression
1 isleag.p P=BaseG
2 isleag.g φG𝒢Tarski
3 isleag.a φAP
4 isleag.b φBP
5 isleag.c φCP
6 isleag.d φDP
7 isleag.e φEP
8 isleag.f φFP
9 isleagd.s ˙=𝒢G
10 isleagd.x φXP
11 isleagd.1 φX𝒢G⟨“DEF”⟩
12 isleagd.2 φ⟨“ABC”⟩𝒢G⟨“DEX”⟩
13 9 eqcomi 𝒢G=˙
14 13 a1i φ𝒢G=˙
15 simpr φx=Xx=X
16 15 breq1d φx=Xx𝒢G⟨“DEF”⟩X𝒢G⟨“DEF”⟩
17 eqidd φx=XD=D
18 eqidd φx=XE=E
19 17 18 15 s3eqd φx=X⟨“DEx”⟩=⟨“DEX”⟩
20 19 breq2d φx=X⟨“ABC”⟩𝒢G⟨“DEx”⟩⟨“ABC”⟩𝒢G⟨“DEX”⟩
21 16 20 anbi12d φx=Xx𝒢G⟨“DEF”⟩⟨“ABC”⟩𝒢G⟨“DEx”⟩X𝒢G⟨“DEF”⟩⟨“ABC”⟩𝒢G⟨“DEX”⟩
22 11 12 jca φX𝒢G⟨“DEF”⟩⟨“ABC”⟩𝒢G⟨“DEX”⟩
23 10 21 22 rspcedvd φxPx𝒢G⟨“DEF”⟩⟨“ABC”⟩𝒢G⟨“DEx”⟩
24 1 2 3 4 5 6 7 8 isleag φ⟨“ABC”⟩𝒢G⟨“DEF”⟩xPx𝒢G⟨“DEF”⟩⟨“ABC”⟩𝒢G⟨“DEx”⟩
25 23 24 mpbird φ⟨“ABC”⟩𝒢G⟨“DEF”⟩
26 14 25 breqdi φ⟨“ABC”⟩˙⟨“DEF”⟩