Metamath Proof Explorer


Theorem isleagd

Description: Sufficient condition for "less than" angle relation, deduction version (Contributed by Thierry Arnoux, 12-Oct-2020)

Ref Expression
Hypotheses isleag.p 𝑃 = ( Base ‘ 𝐺 )
isleag.g ( 𝜑𝐺 ∈ TarskiG )
isleag.a ( 𝜑𝐴𝑃 )
isleag.b ( 𝜑𝐵𝑃 )
isleag.c ( 𝜑𝐶𝑃 )
isleag.d ( 𝜑𝐷𝑃 )
isleag.e ( 𝜑𝐸𝑃 )
isleag.f ( 𝜑𝐹𝑃 )
isleagd.s = ( ≤𝐺 )
isleagd.x ( 𝜑𝑋𝑃 )
isleagd.1 ( 𝜑𝑋 ( inA ‘ 𝐺 ) ⟨“ 𝐷 𝐸 𝐹 ”⟩ )
isleagd.2 ( 𝜑 → ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrA ‘ 𝐺 ) ⟨“ 𝐷 𝐸 𝑋 ”⟩ )
Assertion isleagd ( 𝜑 → ⟨“ 𝐴 𝐵 𝐶 ”⟩ ⟨“ 𝐷 𝐸 𝐹 ”⟩ )

Proof

Step Hyp Ref Expression
1 isleag.p 𝑃 = ( Base ‘ 𝐺 )
2 isleag.g ( 𝜑𝐺 ∈ TarskiG )
3 isleag.a ( 𝜑𝐴𝑃 )
4 isleag.b ( 𝜑𝐵𝑃 )
5 isleag.c ( 𝜑𝐶𝑃 )
6 isleag.d ( 𝜑𝐷𝑃 )
7 isleag.e ( 𝜑𝐸𝑃 )
8 isleag.f ( 𝜑𝐹𝑃 )
9 isleagd.s = ( ≤𝐺 )
10 isleagd.x ( 𝜑𝑋𝑃 )
11 isleagd.1 ( 𝜑𝑋 ( inA ‘ 𝐺 ) ⟨“ 𝐷 𝐸 𝐹 ”⟩ )
12 isleagd.2 ( 𝜑 → ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrA ‘ 𝐺 ) ⟨“ 𝐷 𝐸 𝑋 ”⟩ )
13 9 eqcomi ( ≤𝐺 ) =
14 13 a1i ( 𝜑 → ( ≤𝐺 ) = )
15 simpr ( ( 𝜑𝑥 = 𝑋 ) → 𝑥 = 𝑋 )
16 15 breq1d ( ( 𝜑𝑥 = 𝑋 ) → ( 𝑥 ( inA ‘ 𝐺 ) ⟨“ 𝐷 𝐸 𝐹 ”⟩ ↔ 𝑋 ( inA ‘ 𝐺 ) ⟨“ 𝐷 𝐸 𝐹 ”⟩ ) )
17 eqidd ( ( 𝜑𝑥 = 𝑋 ) → 𝐷 = 𝐷 )
18 eqidd ( ( 𝜑𝑥 = 𝑋 ) → 𝐸 = 𝐸 )
19 17 18 15 s3eqd ( ( 𝜑𝑥 = 𝑋 ) → ⟨“ 𝐷 𝐸 𝑥 ”⟩ = ⟨“ 𝐷 𝐸 𝑋 ”⟩ )
20 19 breq2d ( ( 𝜑𝑥 = 𝑋 ) → ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrA ‘ 𝐺 ) ⟨“ 𝐷 𝐸 𝑥 ”⟩ ↔ ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrA ‘ 𝐺 ) ⟨“ 𝐷 𝐸 𝑋 ”⟩ ) )
21 16 20 anbi12d ( ( 𝜑𝑥 = 𝑋 ) → ( ( 𝑥 ( inA ‘ 𝐺 ) ⟨“ 𝐷 𝐸 𝐹 ”⟩ ∧ ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrA ‘ 𝐺 ) ⟨“ 𝐷 𝐸 𝑥 ”⟩ ) ↔ ( 𝑋 ( inA ‘ 𝐺 ) ⟨“ 𝐷 𝐸 𝐹 ”⟩ ∧ ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrA ‘ 𝐺 ) ⟨“ 𝐷 𝐸 𝑋 ”⟩ ) ) )
22 11 12 jca ( 𝜑 → ( 𝑋 ( inA ‘ 𝐺 ) ⟨“ 𝐷 𝐸 𝐹 ”⟩ ∧ ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrA ‘ 𝐺 ) ⟨“ 𝐷 𝐸 𝑋 ”⟩ ) )
23 10 21 22 rspcedvd ( 𝜑 → ∃ 𝑥𝑃 ( 𝑥 ( inA ‘ 𝐺 ) ⟨“ 𝐷 𝐸 𝐹 ”⟩ ∧ ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrA ‘ 𝐺 ) ⟨“ 𝐷 𝐸 𝑥 ”⟩ ) )
24 1 2 3 4 5 6 7 8 isleag ( 𝜑 → ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( ≤𝐺 ) ⟨“ 𝐷 𝐸 𝐹 ”⟩ ↔ ∃ 𝑥𝑃 ( 𝑥 ( inA ‘ 𝐺 ) ⟨“ 𝐷 𝐸 𝐹 ”⟩ ∧ ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrA ‘ 𝐺 ) ⟨“ 𝐷 𝐸 𝑥 ”⟩ ) ) )
25 23 24 mpbird ( 𝜑 → ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( ≤𝐺 ) ⟨“ 𝐷 𝐸 𝐹 ”⟩ )
26 14 25 breqdi ( 𝜑 → ⟨“ 𝐴 𝐵 𝐶 ”⟩ ⟨“ 𝐷 𝐸 𝐹 ”⟩ )