Step |
Hyp |
Ref |
Expression |
0 |
|
cleo |
⊢ ≤op |
1 |
|
vt |
⊢ 𝑡 |
2 |
|
vu |
⊢ 𝑢 |
3 |
2
|
cv |
⊢ 𝑢 |
4 |
|
chod |
⊢ −op |
5 |
1
|
cv |
⊢ 𝑡 |
6 |
3 5 4
|
co |
⊢ ( 𝑢 −op 𝑡 ) |
7 |
|
cho |
⊢ HrmOp |
8 |
6 7
|
wcel |
⊢ ( 𝑢 −op 𝑡 ) ∈ HrmOp |
9 |
|
vx |
⊢ 𝑥 |
10 |
|
chba |
⊢ ℋ |
11 |
|
cc0 |
⊢ 0 |
12 |
|
cle |
⊢ ≤ |
13 |
9
|
cv |
⊢ 𝑥 |
14 |
13 6
|
cfv |
⊢ ( ( 𝑢 −op 𝑡 ) ‘ 𝑥 ) |
15 |
|
csp |
⊢ ·ih |
16 |
14 13 15
|
co |
⊢ ( ( ( 𝑢 −op 𝑡 ) ‘ 𝑥 ) ·ih 𝑥 ) |
17 |
11 16 12
|
wbr |
⊢ 0 ≤ ( ( ( 𝑢 −op 𝑡 ) ‘ 𝑥 ) ·ih 𝑥 ) |
18 |
17 9 10
|
wral |
⊢ ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( 𝑢 −op 𝑡 ) ‘ 𝑥 ) ·ih 𝑥 ) |
19 |
8 18
|
wa |
⊢ ( ( 𝑢 −op 𝑡 ) ∈ HrmOp ∧ ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( 𝑢 −op 𝑡 ) ‘ 𝑥 ) ·ih 𝑥 ) ) |
20 |
19 1 2
|
copab |
⊢ { 〈 𝑡 , 𝑢 〉 ∣ ( ( 𝑢 −op 𝑡 ) ∈ HrmOp ∧ ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( 𝑢 −op 𝑡 ) ‘ 𝑥 ) ·ih 𝑥 ) ) } |
21 |
0 20
|
wceq |
⊢ ≤op = { 〈 𝑡 , 𝑢 〉 ∣ ( ( 𝑢 −op 𝑡 ) ∈ HrmOp ∧ ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( 𝑢 −op 𝑡 ) ‘ 𝑥 ) ·ih 𝑥 ) ) } |