Metamath Proof Explorer


Definition df-leop

Description: Define positive operator ordering. Definition VI.1 of Retherford p. 49. Note that ( ~H X. 0H ) <_op T means that T is a positive operator. (Contributed by NM, 23-Jul-2006) (New usage is discouraged.)

Ref Expression
Assertion df-leop op = { ⟨ 𝑡 , 𝑢 ⟩ ∣ ( ( 𝑢op 𝑡 ) ∈ HrmOp ∧ ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( 𝑢op 𝑡 ) ‘ 𝑥 ) ·ih 𝑥 ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cleo op
1 vt 𝑡
2 vu 𝑢
3 2 cv 𝑢
4 chod op
5 1 cv 𝑡
6 3 5 4 co ( 𝑢op 𝑡 )
7 cho HrmOp
8 6 7 wcel ( 𝑢op 𝑡 ) ∈ HrmOp
9 vx 𝑥
10 chba
11 cc0 0
12 cle
13 9 cv 𝑥
14 13 6 cfv ( ( 𝑢op 𝑡 ) ‘ 𝑥 )
15 csp ·ih
16 14 13 15 co ( ( ( 𝑢op 𝑡 ) ‘ 𝑥 ) ·ih 𝑥 )
17 11 16 12 wbr 0 ≤ ( ( ( 𝑢op 𝑡 ) ‘ 𝑥 ) ·ih 𝑥 )
18 17 9 10 wral 𝑥 ∈ ℋ 0 ≤ ( ( ( 𝑢op 𝑡 ) ‘ 𝑥 ) ·ih 𝑥 )
19 8 18 wa ( ( 𝑢op 𝑡 ) ∈ HrmOp ∧ ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( 𝑢op 𝑡 ) ‘ 𝑥 ) ·ih 𝑥 ) )
20 19 1 2 copab { ⟨ 𝑡 , 𝑢 ⟩ ∣ ( ( 𝑢op 𝑡 ) ∈ HrmOp ∧ ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( 𝑢op 𝑡 ) ‘ 𝑥 ) ·ih 𝑥 ) ) }
21 0 20 wceq op = { ⟨ 𝑡 , 𝑢 ⟩ ∣ ( ( 𝑢op 𝑡 ) ∈ HrmOp ∧ ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( 𝑢op 𝑡 ) ‘ 𝑥 ) ·ih 𝑥 ) ) }