| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cleo |
⊢ ≤op |
| 1 |
|
vt |
⊢ 𝑡 |
| 2 |
|
vu |
⊢ 𝑢 |
| 3 |
2
|
cv |
⊢ 𝑢 |
| 4 |
|
chod |
⊢ −op |
| 5 |
1
|
cv |
⊢ 𝑡 |
| 6 |
3 5 4
|
co |
⊢ ( 𝑢 −op 𝑡 ) |
| 7 |
|
cho |
⊢ HrmOp |
| 8 |
6 7
|
wcel |
⊢ ( 𝑢 −op 𝑡 ) ∈ HrmOp |
| 9 |
|
vx |
⊢ 𝑥 |
| 10 |
|
chba |
⊢ ℋ |
| 11 |
|
cc0 |
⊢ 0 |
| 12 |
|
cle |
⊢ ≤ |
| 13 |
9
|
cv |
⊢ 𝑥 |
| 14 |
13 6
|
cfv |
⊢ ( ( 𝑢 −op 𝑡 ) ‘ 𝑥 ) |
| 15 |
|
csp |
⊢ ·ih |
| 16 |
14 13 15
|
co |
⊢ ( ( ( 𝑢 −op 𝑡 ) ‘ 𝑥 ) ·ih 𝑥 ) |
| 17 |
11 16 12
|
wbr |
⊢ 0 ≤ ( ( ( 𝑢 −op 𝑡 ) ‘ 𝑥 ) ·ih 𝑥 ) |
| 18 |
17 9 10
|
wral |
⊢ ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( 𝑢 −op 𝑡 ) ‘ 𝑥 ) ·ih 𝑥 ) |
| 19 |
8 18
|
wa |
⊢ ( ( 𝑢 −op 𝑡 ) ∈ HrmOp ∧ ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( 𝑢 −op 𝑡 ) ‘ 𝑥 ) ·ih 𝑥 ) ) |
| 20 |
19 1 2
|
copab |
⊢ { 〈 𝑡 , 𝑢 〉 ∣ ( ( 𝑢 −op 𝑡 ) ∈ HrmOp ∧ ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( 𝑢 −op 𝑡 ) ‘ 𝑥 ) ·ih 𝑥 ) ) } |
| 21 |
0 20
|
wceq |
⊢ ≤op = { 〈 𝑡 , 𝑢 〉 ∣ ( ( 𝑢 −op 𝑡 ) ∈ HrmOp ∧ ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( 𝑢 −op 𝑡 ) ‘ 𝑥 ) ·ih 𝑥 ) ) } |