| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cleo |
|- <_op |
| 1 |
|
vt |
|- t |
| 2 |
|
vu |
|- u |
| 3 |
2
|
cv |
|- u |
| 4 |
|
chod |
|- -op |
| 5 |
1
|
cv |
|- t |
| 6 |
3 5 4
|
co |
|- ( u -op t ) |
| 7 |
|
cho |
|- HrmOp |
| 8 |
6 7
|
wcel |
|- ( u -op t ) e. HrmOp |
| 9 |
|
vx |
|- x |
| 10 |
|
chba |
|- ~H |
| 11 |
|
cc0 |
|- 0 |
| 12 |
|
cle |
|- <_ |
| 13 |
9
|
cv |
|- x |
| 14 |
13 6
|
cfv |
|- ( ( u -op t ) ` x ) |
| 15 |
|
csp |
|- .ih |
| 16 |
14 13 15
|
co |
|- ( ( ( u -op t ) ` x ) .ih x ) |
| 17 |
11 16 12
|
wbr |
|- 0 <_ ( ( ( u -op t ) ` x ) .ih x ) |
| 18 |
17 9 10
|
wral |
|- A. x e. ~H 0 <_ ( ( ( u -op t ) ` x ) .ih x ) |
| 19 |
8 18
|
wa |
|- ( ( u -op t ) e. HrmOp /\ A. x e. ~H 0 <_ ( ( ( u -op t ) ` x ) .ih x ) ) |
| 20 |
19 1 2
|
copab |
|- { <. t , u >. | ( ( u -op t ) e. HrmOp /\ A. x e. ~H 0 <_ ( ( ( u -op t ) ` x ) .ih x ) ) } |
| 21 |
0 20
|
wceq |
|- <_op = { <. t , u >. | ( ( u -op t ) e. HrmOp /\ A. x e. ~H 0 <_ ( ( ( u -op t ) ` x ) .ih x ) ) } |