Metamath Proof Explorer


Definition df-leop

Description: Define positive operator ordering. Definition VI.1 of Retherford p. 49. Note that ( ~H X. 0H ) <_op T means that T is a positive operator. (Contributed by NM, 23-Jul-2006) (New usage is discouraged.)

Ref Expression
Assertion df-leop
|- <_op = { <. t , u >. | ( ( u -op t ) e. HrmOp /\ A. x e. ~H 0 <_ ( ( ( u -op t ) ` x ) .ih x ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cleo
 |-  <_op
1 vt
 |-  t
2 vu
 |-  u
3 2 cv
 |-  u
4 chod
 |-  -op
5 1 cv
 |-  t
6 3 5 4 co
 |-  ( u -op t )
7 cho
 |-  HrmOp
8 6 7 wcel
 |-  ( u -op t ) e. HrmOp
9 vx
 |-  x
10 chba
 |-  ~H
11 cc0
 |-  0
12 cle
 |-  <_
13 9 cv
 |-  x
14 13 6 cfv
 |-  ( ( u -op t ) ` x )
15 csp
 |-  .ih
16 14 13 15 co
 |-  ( ( ( u -op t ) ` x ) .ih x )
17 11 16 12 wbr
 |-  0 <_ ( ( ( u -op t ) ` x ) .ih x )
18 17 9 10 wral
 |-  A. x e. ~H 0 <_ ( ( ( u -op t ) ` x ) .ih x )
19 8 18 wa
 |-  ( ( u -op t ) e. HrmOp /\ A. x e. ~H 0 <_ ( ( ( u -op t ) ` x ) .ih x ) )
20 19 1 2 copab
 |-  { <. t , u >. | ( ( u -op t ) e. HrmOp /\ A. x e. ~H 0 <_ ( ( ( u -op t ) ` x ) .ih x ) ) }
21 0 20 wceq
 |-  <_op = { <. t , u >. | ( ( u -op t ) e. HrmOp /\ A. x e. ~H 0 <_ ( ( ( u -op t ) ` x ) .ih x ) ) }