Metamath Proof Explorer


Definition df-leop

Description: Define positive operator ordering. Definition VI.1 of Retherford p. 49. Note that ( ~H X. 0H ) <_op T means that T is a positive operator. (Contributed by NM, 23-Jul-2006) (New usage is discouraged.)

Ref Expression
Assertion df-leop op=tu|u-optHrmOpx0u-optxihx

Detailed syntax breakdown

Step Hyp Ref Expression
0 cleo classop
1 vt setvart
2 vu setvaru
3 2 cv setvaru
4 chod class-op
5 1 cv setvart
6 3 5 4 co classu-opt
7 cho classHrmOp
8 6 7 wcel wffu-optHrmOp
9 vx setvarx
10 chba class
11 cc0 class0
12 cle class
13 9 cv setvarx
14 13 6 cfv classu-optx
15 csp classih
16 14 13 15 co classu-optxihx
17 11 16 12 wbr wff0u-optxihx
18 17 9 10 wral wffx0u-optxihx
19 8 18 wa wffu-optHrmOpx0u-optxihx
20 19 1 2 copab classtu|u-optHrmOpx0u-optxihx
21 0 20 wceq wffop=tu|u-optHrmOpx0u-optxihx