Metamath Proof Explorer


Definition df-line3

Description: Define the set of all lines. A line is an infinite subset of RR3 that satisfies a PtDf property. (Contributed by Andrew Salmon, 15-Jul-2012)

Ref Expression
Assertion df-line3 line3 = { 𝑥 ∈ 𝒫 RR3 ∣ ( 2o𝑥 ∧ ∀ 𝑦𝑥𝑧𝑥 ( 𝑧𝑦 → ran PtDf ( 𝑦 , 𝑧 ) = 𝑥 ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cline3 line3
1 vx 𝑥
2 crr3c RR3
3 2 cpw 𝒫 RR3
4 c2o 2o
5 cdom
6 1 cv 𝑥
7 4 6 5 wbr 2o𝑥
8 vy 𝑦
9 vz 𝑧
10 9 cv 𝑧
11 8 cv 𝑦
12 10 11 wne 𝑧𝑦
13 11 10 cptdfc PtDf ( 𝑦 , 𝑧 )
14 13 crn ran PtDf ( 𝑦 , 𝑧 )
15 14 6 wceq ran PtDf ( 𝑦 , 𝑧 ) = 𝑥
16 12 15 wi ( 𝑧𝑦 → ran PtDf ( 𝑦 , 𝑧 ) = 𝑥 )
17 16 9 6 wral 𝑧𝑥 ( 𝑧𝑦 → ran PtDf ( 𝑦 , 𝑧 ) = 𝑥 )
18 17 8 6 wral 𝑦𝑥𝑧𝑥 ( 𝑧𝑦 → ran PtDf ( 𝑦 , 𝑧 ) = 𝑥 )
19 7 18 wa ( 2o𝑥 ∧ ∀ 𝑦𝑥𝑧𝑥 ( 𝑧𝑦 → ran PtDf ( 𝑦 , 𝑧 ) = 𝑥 ) )
20 19 1 3 crab { 𝑥 ∈ 𝒫 RR3 ∣ ( 2o𝑥 ∧ ∀ 𝑦𝑥𝑧𝑥 ( 𝑧𝑦 → ran PtDf ( 𝑦 , 𝑧 ) = 𝑥 ) ) }
21 0 20 wceq line3 = { 𝑥 ∈ 𝒫 RR3 ∣ ( 2o𝑥 ∧ ∀ 𝑦𝑥𝑧𝑥 ( 𝑧𝑦 → ran PtDf ( 𝑦 , 𝑧 ) = 𝑥 ) ) }