| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cline3 |
⊢ line3 |
| 1 |
|
vx |
⊢ 𝑥 |
| 2 |
|
crr3c |
⊢ RR3 |
| 3 |
2
|
cpw |
⊢ 𝒫 RR3 |
| 4 |
|
c2o |
⊢ 2o |
| 5 |
|
cdom |
⊢ ≼ |
| 6 |
1
|
cv |
⊢ 𝑥 |
| 7 |
4 6 5
|
wbr |
⊢ 2o ≼ 𝑥 |
| 8 |
|
vy |
⊢ 𝑦 |
| 9 |
|
vz |
⊢ 𝑧 |
| 10 |
9
|
cv |
⊢ 𝑧 |
| 11 |
8
|
cv |
⊢ 𝑦 |
| 12 |
10 11
|
wne |
⊢ 𝑧 ≠ 𝑦 |
| 13 |
11 10
|
cptdfc |
⊢ PtDf ( 𝑦 , 𝑧 ) |
| 14 |
13
|
crn |
⊢ ran PtDf ( 𝑦 , 𝑧 ) |
| 15 |
14 6
|
wceq |
⊢ ran PtDf ( 𝑦 , 𝑧 ) = 𝑥 |
| 16 |
12 15
|
wi |
⊢ ( 𝑧 ≠ 𝑦 → ran PtDf ( 𝑦 , 𝑧 ) = 𝑥 ) |
| 17 |
16 9 6
|
wral |
⊢ ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ 𝑦 → ran PtDf ( 𝑦 , 𝑧 ) = 𝑥 ) |
| 18 |
17 8 6
|
wral |
⊢ ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ 𝑦 → ran PtDf ( 𝑦 , 𝑧 ) = 𝑥 ) |
| 19 |
7 18
|
wa |
⊢ ( 2o ≼ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ 𝑦 → ran PtDf ( 𝑦 , 𝑧 ) = 𝑥 ) ) |
| 20 |
19 1 3
|
crab |
⊢ { 𝑥 ∈ 𝒫 RR3 ∣ ( 2o ≼ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ 𝑦 → ran PtDf ( 𝑦 , 𝑧 ) = 𝑥 ) ) } |
| 21 |
0 20
|
wceq |
⊢ line3 = { 𝑥 ∈ 𝒫 RR3 ∣ ( 2o ≼ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ 𝑦 → ran PtDf ( 𝑦 , 𝑧 ) = 𝑥 ) ) } |