Step |
Hyp |
Ref |
Expression |
0 |
|
cline3 |
|- line3 |
1 |
|
vx |
|- x |
2 |
|
crr3c |
|- RR3 |
3 |
2
|
cpw |
|- ~P RR3 |
4 |
|
c2o |
|- 2o |
5 |
|
cdom |
|- ~<_ |
6 |
1
|
cv |
|- x |
7 |
4 6 5
|
wbr |
|- 2o ~<_ x |
8 |
|
vy |
|- y |
9 |
|
vz |
|- z |
10 |
9
|
cv |
|- z |
11 |
8
|
cv |
|- y |
12 |
10 11
|
wne |
|- z =/= y |
13 |
11 10
|
cptdfc |
|- PtDf ( y , z ) |
14 |
13
|
crn |
|- ran PtDf ( y , z ) |
15 |
14 6
|
wceq |
|- ran PtDf ( y , z ) = x |
16 |
12 15
|
wi |
|- ( z =/= y -> ran PtDf ( y , z ) = x ) |
17 |
16 9 6
|
wral |
|- A. z e. x ( z =/= y -> ran PtDf ( y , z ) = x ) |
18 |
17 8 6
|
wral |
|- A. y e. x A. z e. x ( z =/= y -> ran PtDf ( y , z ) = x ) |
19 |
7 18
|
wa |
|- ( 2o ~<_ x /\ A. y e. x A. z e. x ( z =/= y -> ran PtDf ( y , z ) = x ) ) |
20 |
19 1 3
|
crab |
|- { x e. ~P RR3 | ( 2o ~<_ x /\ A. y e. x A. z e. x ( z =/= y -> ran PtDf ( y , z ) = x ) ) } |
21 |
0 20
|
wceq |
|- line3 = { x e. ~P RR3 | ( 2o ~<_ x /\ A. y e. x A. z e. x ( z =/= y -> ran PtDf ( y , z ) = x ) ) } |