| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cmdl |
⊢ mMdl |
| 1 |
|
vt |
⊢ 𝑡 |
| 2 |
|
cmfs |
⊢ mFS |
| 3 |
|
cmuv |
⊢ mUV |
| 4 |
1
|
cv |
⊢ 𝑡 |
| 5 |
4 3
|
cfv |
⊢ ( mUV ‘ 𝑡 ) |
| 6 |
|
vu |
⊢ 𝑢 |
| 7 |
|
cmex |
⊢ mEx |
| 8 |
4 7
|
cfv |
⊢ ( mEx ‘ 𝑡 ) |
| 9 |
|
vx |
⊢ 𝑥 |
| 10 |
|
cmvl |
⊢ mVL |
| 11 |
4 10
|
cfv |
⊢ ( mVL ‘ 𝑡 ) |
| 12 |
|
vv |
⊢ 𝑣 |
| 13 |
|
cmevl |
⊢ mEval |
| 14 |
4 13
|
cfv |
⊢ ( mEval ‘ 𝑡 ) |
| 15 |
|
vn |
⊢ 𝑛 |
| 16 |
|
cmfsh |
⊢ mFresh |
| 17 |
4 16
|
cfv |
⊢ ( mFresh ‘ 𝑡 ) |
| 18 |
|
vf |
⊢ 𝑓 |
| 19 |
6
|
cv |
⊢ 𝑢 |
| 20 |
|
cmtc |
⊢ mTC |
| 21 |
4 20
|
cfv |
⊢ ( mTC ‘ 𝑡 ) |
| 22 |
|
cvv |
⊢ V |
| 23 |
21 22
|
cxp |
⊢ ( ( mTC ‘ 𝑡 ) × V ) |
| 24 |
19 23
|
wss |
⊢ 𝑢 ⊆ ( ( mTC ‘ 𝑡 ) × V ) |
| 25 |
18
|
cv |
⊢ 𝑓 |
| 26 |
|
cmfr |
⊢ mFRel |
| 27 |
4 26
|
cfv |
⊢ ( mFRel ‘ 𝑡 ) |
| 28 |
25 27
|
wcel |
⊢ 𝑓 ∈ ( mFRel ‘ 𝑡 ) |
| 29 |
15
|
cv |
⊢ 𝑛 |
| 30 |
|
cpm |
⊢ ↑pm |
| 31 |
12
|
cv |
⊢ 𝑣 |
| 32 |
31 8
|
cxp |
⊢ ( 𝑣 × ( mEx ‘ 𝑡 ) ) |
| 33 |
19 32 30
|
co |
⊢ ( 𝑢 ↑pm ( 𝑣 × ( mEx ‘ 𝑡 ) ) ) |
| 34 |
29 33
|
wcel |
⊢ 𝑛 ∈ ( 𝑢 ↑pm ( 𝑣 × ( mEx ‘ 𝑡 ) ) ) |
| 35 |
24 28 34
|
w3a |
⊢ ( 𝑢 ⊆ ( ( mTC ‘ 𝑡 ) × V ) ∧ 𝑓 ∈ ( mFRel ‘ 𝑡 ) ∧ 𝑛 ∈ ( 𝑢 ↑pm ( 𝑣 × ( mEx ‘ 𝑡 ) ) ) ) |
| 36 |
|
vm |
⊢ 𝑚 |
| 37 |
|
ve |
⊢ 𝑒 |
| 38 |
9
|
cv |
⊢ 𝑥 |
| 39 |
36
|
cv |
⊢ 𝑚 |
| 40 |
37
|
cv |
⊢ 𝑒 |
| 41 |
39 40
|
cop |
⊢ 〈 𝑚 , 𝑒 〉 |
| 42 |
41
|
csn |
⊢ { 〈 𝑚 , 𝑒 〉 } |
| 43 |
29 42
|
cima |
⊢ ( 𝑛 “ { 〈 𝑚 , 𝑒 〉 } ) |
| 44 |
|
c1st |
⊢ 1st |
| 45 |
40 44
|
cfv |
⊢ ( 1st ‘ 𝑒 ) |
| 46 |
45
|
csn |
⊢ { ( 1st ‘ 𝑒 ) } |
| 47 |
19 46
|
cima |
⊢ ( 𝑢 “ { ( 1st ‘ 𝑒 ) } ) |
| 48 |
43 47
|
wss |
⊢ ( 𝑛 “ { 〈 𝑚 , 𝑒 〉 } ) ⊆ ( 𝑢 “ { ( 1st ‘ 𝑒 ) } ) |
| 49 |
48 37 38
|
wral |
⊢ ∀ 𝑒 ∈ 𝑥 ( 𝑛 “ { 〈 𝑚 , 𝑒 〉 } ) ⊆ ( 𝑢 “ { ( 1st ‘ 𝑒 ) } ) |
| 50 |
|
vy |
⊢ 𝑦 |
| 51 |
|
cmvar |
⊢ mVR |
| 52 |
4 51
|
cfv |
⊢ ( mVR ‘ 𝑡 ) |
| 53 |
|
cmvh |
⊢ mVH |
| 54 |
4 53
|
cfv |
⊢ ( mVH ‘ 𝑡 ) |
| 55 |
50
|
cv |
⊢ 𝑦 |
| 56 |
55 54
|
cfv |
⊢ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) |
| 57 |
39 56
|
cop |
⊢ 〈 𝑚 , ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) 〉 |
| 58 |
55 39
|
cfv |
⊢ ( 𝑚 ‘ 𝑦 ) |
| 59 |
57 58 29
|
wbr |
⊢ 〈 𝑚 , ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) 〉 𝑛 ( 𝑚 ‘ 𝑦 ) |
| 60 |
59 50 52
|
wral |
⊢ ∀ 𝑦 ∈ ( mVR ‘ 𝑡 ) 〈 𝑚 , ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) 〉 𝑛 ( 𝑚 ‘ 𝑦 ) |
| 61 |
|
vd |
⊢ 𝑑 |
| 62 |
|
vh |
⊢ ℎ |
| 63 |
|
va |
⊢ 𝑎 |
| 64 |
61
|
cv |
⊢ 𝑑 |
| 65 |
62
|
cv |
⊢ ℎ |
| 66 |
63
|
cv |
⊢ 𝑎 |
| 67 |
64 65 66
|
cotp |
⊢ 〈 𝑑 , ℎ , 𝑎 〉 |
| 68 |
|
cmax |
⊢ mAx |
| 69 |
4 68
|
cfv |
⊢ ( mAx ‘ 𝑡 ) |
| 70 |
67 69
|
wcel |
⊢ 〈 𝑑 , ℎ , 𝑎 〉 ∈ ( mAx ‘ 𝑡 ) |
| 71 |
|
vz |
⊢ 𝑧 |
| 72 |
71
|
cv |
⊢ 𝑧 |
| 73 |
55 72 64
|
wbr |
⊢ 𝑦 𝑑 𝑧 |
| 74 |
72 39
|
cfv |
⊢ ( 𝑚 ‘ 𝑧 ) |
| 75 |
58 74 25
|
wbr |
⊢ ( 𝑚 ‘ 𝑦 ) 𝑓 ( 𝑚 ‘ 𝑧 ) |
| 76 |
73 75
|
wi |
⊢ ( 𝑦 𝑑 𝑧 → ( 𝑚 ‘ 𝑦 ) 𝑓 ( 𝑚 ‘ 𝑧 ) ) |
| 77 |
76 71
|
wal |
⊢ ∀ 𝑧 ( 𝑦 𝑑 𝑧 → ( 𝑚 ‘ 𝑦 ) 𝑓 ( 𝑚 ‘ 𝑧 ) ) |
| 78 |
77 50
|
wal |
⊢ ∀ 𝑦 ∀ 𝑧 ( 𝑦 𝑑 𝑧 → ( 𝑚 ‘ 𝑦 ) 𝑓 ( 𝑚 ‘ 𝑧 ) ) |
| 79 |
29
|
cdm |
⊢ dom 𝑛 |
| 80 |
39
|
csn |
⊢ { 𝑚 } |
| 81 |
79 80
|
cima |
⊢ ( dom 𝑛 “ { 𝑚 } ) |
| 82 |
65 81
|
wss |
⊢ ℎ ⊆ ( dom 𝑛 “ { 𝑚 } ) |
| 83 |
78 82
|
wa |
⊢ ( ∀ 𝑦 ∀ 𝑧 ( 𝑦 𝑑 𝑧 → ( 𝑚 ‘ 𝑦 ) 𝑓 ( 𝑚 ‘ 𝑧 ) ) ∧ ℎ ⊆ ( dom 𝑛 “ { 𝑚 } ) ) |
| 84 |
39 66 79
|
wbr |
⊢ 𝑚 dom 𝑛 𝑎 |
| 85 |
83 84
|
wi |
⊢ ( ( ∀ 𝑦 ∀ 𝑧 ( 𝑦 𝑑 𝑧 → ( 𝑚 ‘ 𝑦 ) 𝑓 ( 𝑚 ‘ 𝑧 ) ) ∧ ℎ ⊆ ( dom 𝑛 “ { 𝑚 } ) ) → 𝑚 dom 𝑛 𝑎 ) |
| 86 |
70 85
|
wi |
⊢ ( 〈 𝑑 , ℎ , 𝑎 〉 ∈ ( mAx ‘ 𝑡 ) → ( ( ∀ 𝑦 ∀ 𝑧 ( 𝑦 𝑑 𝑧 → ( 𝑚 ‘ 𝑦 ) 𝑓 ( 𝑚 ‘ 𝑧 ) ) ∧ ℎ ⊆ ( dom 𝑛 “ { 𝑚 } ) ) → 𝑚 dom 𝑛 𝑎 ) ) |
| 87 |
86 63
|
wal |
⊢ ∀ 𝑎 ( 〈 𝑑 , ℎ , 𝑎 〉 ∈ ( mAx ‘ 𝑡 ) → ( ( ∀ 𝑦 ∀ 𝑧 ( 𝑦 𝑑 𝑧 → ( 𝑚 ‘ 𝑦 ) 𝑓 ( 𝑚 ‘ 𝑧 ) ) ∧ ℎ ⊆ ( dom 𝑛 “ { 𝑚 } ) ) → 𝑚 dom 𝑛 𝑎 ) ) |
| 88 |
87 62
|
wal |
⊢ ∀ ℎ ∀ 𝑎 ( 〈 𝑑 , ℎ , 𝑎 〉 ∈ ( mAx ‘ 𝑡 ) → ( ( ∀ 𝑦 ∀ 𝑧 ( 𝑦 𝑑 𝑧 → ( 𝑚 ‘ 𝑦 ) 𝑓 ( 𝑚 ‘ 𝑧 ) ) ∧ ℎ ⊆ ( dom 𝑛 “ { 𝑚 } ) ) → 𝑚 dom 𝑛 𝑎 ) ) |
| 89 |
88 61
|
wal |
⊢ ∀ 𝑑 ∀ ℎ ∀ 𝑎 ( 〈 𝑑 , ℎ , 𝑎 〉 ∈ ( mAx ‘ 𝑡 ) → ( ( ∀ 𝑦 ∀ 𝑧 ( 𝑦 𝑑 𝑧 → ( 𝑚 ‘ 𝑦 ) 𝑓 ( 𝑚 ‘ 𝑧 ) ) ∧ ℎ ⊆ ( dom 𝑛 “ { 𝑚 } ) ) → 𝑚 dom 𝑛 𝑎 ) ) |
| 90 |
49 60 89
|
w3a |
⊢ ( ∀ 𝑒 ∈ 𝑥 ( 𝑛 “ { 〈 𝑚 , 𝑒 〉 } ) ⊆ ( 𝑢 “ { ( 1st ‘ 𝑒 ) } ) ∧ ∀ 𝑦 ∈ ( mVR ‘ 𝑡 ) 〈 𝑚 , ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) 〉 𝑛 ( 𝑚 ‘ 𝑦 ) ∧ ∀ 𝑑 ∀ ℎ ∀ 𝑎 ( 〈 𝑑 , ℎ , 𝑎 〉 ∈ ( mAx ‘ 𝑡 ) → ( ( ∀ 𝑦 ∀ 𝑧 ( 𝑦 𝑑 𝑧 → ( 𝑚 ‘ 𝑦 ) 𝑓 ( 𝑚 ‘ 𝑧 ) ) ∧ ℎ ⊆ ( dom 𝑛 “ { 𝑚 } ) ) → 𝑚 dom 𝑛 𝑎 ) ) ) |
| 91 |
|
vs |
⊢ 𝑠 |
| 92 |
|
cmsub |
⊢ mSubst |
| 93 |
4 92
|
cfv |
⊢ ( mSubst ‘ 𝑡 ) |
| 94 |
93
|
crn |
⊢ ran ( mSubst ‘ 𝑡 ) |
| 95 |
91
|
cv |
⊢ 𝑠 |
| 96 |
95 39
|
cop |
⊢ 〈 𝑠 , 𝑚 〉 |
| 97 |
|
cmvsb |
⊢ mVSubst |
| 98 |
4 97
|
cfv |
⊢ ( mVSubst ‘ 𝑡 ) |
| 99 |
96 55 98
|
wbr |
⊢ 〈 𝑠 , 𝑚 〉 ( mVSubst ‘ 𝑡 ) 𝑦 |
| 100 |
40 95
|
cfv |
⊢ ( 𝑠 ‘ 𝑒 ) |
| 101 |
39 100
|
cop |
⊢ 〈 𝑚 , ( 𝑠 ‘ 𝑒 ) 〉 |
| 102 |
101
|
csn |
⊢ { 〈 𝑚 , ( 𝑠 ‘ 𝑒 ) 〉 } |
| 103 |
29 102
|
cima |
⊢ ( 𝑛 “ { 〈 𝑚 , ( 𝑠 ‘ 𝑒 ) 〉 } ) |
| 104 |
55 40
|
cop |
⊢ 〈 𝑦 , 𝑒 〉 |
| 105 |
104
|
csn |
⊢ { 〈 𝑦 , 𝑒 〉 } |
| 106 |
29 105
|
cima |
⊢ ( 𝑛 “ { 〈 𝑦 , 𝑒 〉 } ) |
| 107 |
103 106
|
wceq |
⊢ ( 𝑛 “ { 〈 𝑚 , ( 𝑠 ‘ 𝑒 ) 〉 } ) = ( 𝑛 “ { 〈 𝑦 , 𝑒 〉 } ) |
| 108 |
99 107
|
wi |
⊢ ( 〈 𝑠 , 𝑚 〉 ( mVSubst ‘ 𝑡 ) 𝑦 → ( 𝑛 “ { 〈 𝑚 , ( 𝑠 ‘ 𝑒 ) 〉 } ) = ( 𝑛 “ { 〈 𝑦 , 𝑒 〉 } ) ) |
| 109 |
108 50
|
wal |
⊢ ∀ 𝑦 ( 〈 𝑠 , 𝑚 〉 ( mVSubst ‘ 𝑡 ) 𝑦 → ( 𝑛 “ { 〈 𝑚 , ( 𝑠 ‘ 𝑒 ) 〉 } ) = ( 𝑛 “ { 〈 𝑦 , 𝑒 〉 } ) ) |
| 110 |
109 37 8
|
wral |
⊢ ∀ 𝑒 ∈ ( mEx ‘ 𝑡 ) ∀ 𝑦 ( 〈 𝑠 , 𝑚 〉 ( mVSubst ‘ 𝑡 ) 𝑦 → ( 𝑛 “ { 〈 𝑚 , ( 𝑠 ‘ 𝑒 ) 〉 } ) = ( 𝑛 “ { 〈 𝑦 , 𝑒 〉 } ) ) |
| 111 |
110 91 94
|
wral |
⊢ ∀ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ∀ 𝑒 ∈ ( mEx ‘ 𝑡 ) ∀ 𝑦 ( 〈 𝑠 , 𝑚 〉 ( mVSubst ‘ 𝑡 ) 𝑦 → ( 𝑛 “ { 〈 𝑚 , ( 𝑠 ‘ 𝑒 ) 〉 } ) = ( 𝑛 “ { 〈 𝑦 , 𝑒 〉 } ) ) |
| 112 |
|
vp |
⊢ 𝑝 |
| 113 |
|
cmvrs |
⊢ mVars |
| 114 |
4 113
|
cfv |
⊢ ( mVars ‘ 𝑡 ) |
| 115 |
40 114
|
cfv |
⊢ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) |
| 116 |
39 115
|
cres |
⊢ ( 𝑚 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) |
| 117 |
112
|
cv |
⊢ 𝑝 |
| 118 |
117 115
|
cres |
⊢ ( 𝑝 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) |
| 119 |
116 118
|
wceq |
⊢ ( 𝑚 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) = ( 𝑝 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) |
| 120 |
117 40
|
cop |
⊢ 〈 𝑝 , 𝑒 〉 |
| 121 |
120
|
csn |
⊢ { 〈 𝑝 , 𝑒 〉 } |
| 122 |
29 121
|
cima |
⊢ ( 𝑛 “ { 〈 𝑝 , 𝑒 〉 } ) |
| 123 |
43 122
|
wceq |
⊢ ( 𝑛 “ { 〈 𝑚 , 𝑒 〉 } ) = ( 𝑛 “ { 〈 𝑝 , 𝑒 〉 } ) |
| 124 |
119 123
|
wi |
⊢ ( ( 𝑚 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) = ( 𝑝 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) → ( 𝑛 “ { 〈 𝑚 , 𝑒 〉 } ) = ( 𝑛 “ { 〈 𝑝 , 𝑒 〉 } ) ) |
| 125 |
124 37 38
|
wral |
⊢ ∀ 𝑒 ∈ 𝑥 ( ( 𝑚 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) = ( 𝑝 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) → ( 𝑛 “ { 〈 𝑚 , 𝑒 〉 } ) = ( 𝑛 “ { 〈 𝑝 , 𝑒 〉 } ) ) |
| 126 |
125 112 31
|
wral |
⊢ ∀ 𝑝 ∈ 𝑣 ∀ 𝑒 ∈ 𝑥 ( ( 𝑚 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) = ( 𝑝 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) → ( 𝑛 “ { 〈 𝑚 , 𝑒 〉 } ) = ( 𝑛 “ { 〈 𝑝 , 𝑒 〉 } ) ) |
| 127 |
39 115
|
cima |
⊢ ( 𝑚 “ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) |
| 128 |
55
|
csn |
⊢ { 𝑦 } |
| 129 |
25 128
|
cima |
⊢ ( 𝑓 “ { 𝑦 } ) |
| 130 |
127 129
|
wss |
⊢ ( 𝑚 “ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) ⊆ ( 𝑓 “ { 𝑦 } ) |
| 131 |
43 129
|
wss |
⊢ ( 𝑛 “ { 〈 𝑚 , 𝑒 〉 } ) ⊆ ( 𝑓 “ { 𝑦 } ) |
| 132 |
130 131
|
wi |
⊢ ( ( 𝑚 “ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) ⊆ ( 𝑓 “ { 𝑦 } ) → ( 𝑛 “ { 〈 𝑚 , 𝑒 〉 } ) ⊆ ( 𝑓 “ { 𝑦 } ) ) |
| 133 |
132 37 38
|
wral |
⊢ ∀ 𝑒 ∈ 𝑥 ( ( 𝑚 “ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) ⊆ ( 𝑓 “ { 𝑦 } ) → ( 𝑛 “ { 〈 𝑚 , 𝑒 〉 } ) ⊆ ( 𝑓 “ { 𝑦 } ) ) |
| 134 |
133 50 19
|
wral |
⊢ ∀ 𝑦 ∈ 𝑢 ∀ 𝑒 ∈ 𝑥 ( ( 𝑚 “ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) ⊆ ( 𝑓 “ { 𝑦 } ) → ( 𝑛 “ { 〈 𝑚 , 𝑒 〉 } ) ⊆ ( 𝑓 “ { 𝑦 } ) ) |
| 135 |
111 126 134
|
w3a |
⊢ ( ∀ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ∀ 𝑒 ∈ ( mEx ‘ 𝑡 ) ∀ 𝑦 ( 〈 𝑠 , 𝑚 〉 ( mVSubst ‘ 𝑡 ) 𝑦 → ( 𝑛 “ { 〈 𝑚 , ( 𝑠 ‘ 𝑒 ) 〉 } ) = ( 𝑛 “ { 〈 𝑦 , 𝑒 〉 } ) ) ∧ ∀ 𝑝 ∈ 𝑣 ∀ 𝑒 ∈ 𝑥 ( ( 𝑚 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) = ( 𝑝 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) → ( 𝑛 “ { 〈 𝑚 , 𝑒 〉 } ) = ( 𝑛 “ { 〈 𝑝 , 𝑒 〉 } ) ) ∧ ∀ 𝑦 ∈ 𝑢 ∀ 𝑒 ∈ 𝑥 ( ( 𝑚 “ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) ⊆ ( 𝑓 “ { 𝑦 } ) → ( 𝑛 “ { 〈 𝑚 , 𝑒 〉 } ) ⊆ ( 𝑓 “ { 𝑦 } ) ) ) |
| 136 |
90 135
|
wa |
⊢ ( ( ∀ 𝑒 ∈ 𝑥 ( 𝑛 “ { 〈 𝑚 , 𝑒 〉 } ) ⊆ ( 𝑢 “ { ( 1st ‘ 𝑒 ) } ) ∧ ∀ 𝑦 ∈ ( mVR ‘ 𝑡 ) 〈 𝑚 , ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) 〉 𝑛 ( 𝑚 ‘ 𝑦 ) ∧ ∀ 𝑑 ∀ ℎ ∀ 𝑎 ( 〈 𝑑 , ℎ , 𝑎 〉 ∈ ( mAx ‘ 𝑡 ) → ( ( ∀ 𝑦 ∀ 𝑧 ( 𝑦 𝑑 𝑧 → ( 𝑚 ‘ 𝑦 ) 𝑓 ( 𝑚 ‘ 𝑧 ) ) ∧ ℎ ⊆ ( dom 𝑛 “ { 𝑚 } ) ) → 𝑚 dom 𝑛 𝑎 ) ) ) ∧ ( ∀ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ∀ 𝑒 ∈ ( mEx ‘ 𝑡 ) ∀ 𝑦 ( 〈 𝑠 , 𝑚 〉 ( mVSubst ‘ 𝑡 ) 𝑦 → ( 𝑛 “ { 〈 𝑚 , ( 𝑠 ‘ 𝑒 ) 〉 } ) = ( 𝑛 “ { 〈 𝑦 , 𝑒 〉 } ) ) ∧ ∀ 𝑝 ∈ 𝑣 ∀ 𝑒 ∈ 𝑥 ( ( 𝑚 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) = ( 𝑝 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) → ( 𝑛 “ { 〈 𝑚 , 𝑒 〉 } ) = ( 𝑛 “ { 〈 𝑝 , 𝑒 〉 } ) ) ∧ ∀ 𝑦 ∈ 𝑢 ∀ 𝑒 ∈ 𝑥 ( ( 𝑚 “ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) ⊆ ( 𝑓 “ { 𝑦 } ) → ( 𝑛 “ { 〈 𝑚 , 𝑒 〉 } ) ⊆ ( 𝑓 “ { 𝑦 } ) ) ) ) |
| 137 |
136 36 31
|
wral |
⊢ ∀ 𝑚 ∈ 𝑣 ( ( ∀ 𝑒 ∈ 𝑥 ( 𝑛 “ { 〈 𝑚 , 𝑒 〉 } ) ⊆ ( 𝑢 “ { ( 1st ‘ 𝑒 ) } ) ∧ ∀ 𝑦 ∈ ( mVR ‘ 𝑡 ) 〈 𝑚 , ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) 〉 𝑛 ( 𝑚 ‘ 𝑦 ) ∧ ∀ 𝑑 ∀ ℎ ∀ 𝑎 ( 〈 𝑑 , ℎ , 𝑎 〉 ∈ ( mAx ‘ 𝑡 ) → ( ( ∀ 𝑦 ∀ 𝑧 ( 𝑦 𝑑 𝑧 → ( 𝑚 ‘ 𝑦 ) 𝑓 ( 𝑚 ‘ 𝑧 ) ) ∧ ℎ ⊆ ( dom 𝑛 “ { 𝑚 } ) ) → 𝑚 dom 𝑛 𝑎 ) ) ) ∧ ( ∀ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ∀ 𝑒 ∈ ( mEx ‘ 𝑡 ) ∀ 𝑦 ( 〈 𝑠 , 𝑚 〉 ( mVSubst ‘ 𝑡 ) 𝑦 → ( 𝑛 “ { 〈 𝑚 , ( 𝑠 ‘ 𝑒 ) 〉 } ) = ( 𝑛 “ { 〈 𝑦 , 𝑒 〉 } ) ) ∧ ∀ 𝑝 ∈ 𝑣 ∀ 𝑒 ∈ 𝑥 ( ( 𝑚 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) = ( 𝑝 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) → ( 𝑛 “ { 〈 𝑚 , 𝑒 〉 } ) = ( 𝑛 “ { 〈 𝑝 , 𝑒 〉 } ) ) ∧ ∀ 𝑦 ∈ 𝑢 ∀ 𝑒 ∈ 𝑥 ( ( 𝑚 “ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) ⊆ ( 𝑓 “ { 𝑦 } ) → ( 𝑛 “ { 〈 𝑚 , 𝑒 〉 } ) ⊆ ( 𝑓 “ { 𝑦 } ) ) ) ) |
| 138 |
35 137
|
wa |
⊢ ( ( 𝑢 ⊆ ( ( mTC ‘ 𝑡 ) × V ) ∧ 𝑓 ∈ ( mFRel ‘ 𝑡 ) ∧ 𝑛 ∈ ( 𝑢 ↑pm ( 𝑣 × ( mEx ‘ 𝑡 ) ) ) ) ∧ ∀ 𝑚 ∈ 𝑣 ( ( ∀ 𝑒 ∈ 𝑥 ( 𝑛 “ { 〈 𝑚 , 𝑒 〉 } ) ⊆ ( 𝑢 “ { ( 1st ‘ 𝑒 ) } ) ∧ ∀ 𝑦 ∈ ( mVR ‘ 𝑡 ) 〈 𝑚 , ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) 〉 𝑛 ( 𝑚 ‘ 𝑦 ) ∧ ∀ 𝑑 ∀ ℎ ∀ 𝑎 ( 〈 𝑑 , ℎ , 𝑎 〉 ∈ ( mAx ‘ 𝑡 ) → ( ( ∀ 𝑦 ∀ 𝑧 ( 𝑦 𝑑 𝑧 → ( 𝑚 ‘ 𝑦 ) 𝑓 ( 𝑚 ‘ 𝑧 ) ) ∧ ℎ ⊆ ( dom 𝑛 “ { 𝑚 } ) ) → 𝑚 dom 𝑛 𝑎 ) ) ) ∧ ( ∀ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ∀ 𝑒 ∈ ( mEx ‘ 𝑡 ) ∀ 𝑦 ( 〈 𝑠 , 𝑚 〉 ( mVSubst ‘ 𝑡 ) 𝑦 → ( 𝑛 “ { 〈 𝑚 , ( 𝑠 ‘ 𝑒 ) 〉 } ) = ( 𝑛 “ { 〈 𝑦 , 𝑒 〉 } ) ) ∧ ∀ 𝑝 ∈ 𝑣 ∀ 𝑒 ∈ 𝑥 ( ( 𝑚 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) = ( 𝑝 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) → ( 𝑛 “ { 〈 𝑚 , 𝑒 〉 } ) = ( 𝑛 “ { 〈 𝑝 , 𝑒 〉 } ) ) ∧ ∀ 𝑦 ∈ 𝑢 ∀ 𝑒 ∈ 𝑥 ( ( 𝑚 “ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) ⊆ ( 𝑓 “ { 𝑦 } ) → ( 𝑛 “ { 〈 𝑚 , 𝑒 〉 } ) ⊆ ( 𝑓 “ { 𝑦 } ) ) ) ) ) |
| 139 |
138 18 17
|
wsbc |
⊢ [ ( mFresh ‘ 𝑡 ) / 𝑓 ] ( ( 𝑢 ⊆ ( ( mTC ‘ 𝑡 ) × V ) ∧ 𝑓 ∈ ( mFRel ‘ 𝑡 ) ∧ 𝑛 ∈ ( 𝑢 ↑pm ( 𝑣 × ( mEx ‘ 𝑡 ) ) ) ) ∧ ∀ 𝑚 ∈ 𝑣 ( ( ∀ 𝑒 ∈ 𝑥 ( 𝑛 “ { 〈 𝑚 , 𝑒 〉 } ) ⊆ ( 𝑢 “ { ( 1st ‘ 𝑒 ) } ) ∧ ∀ 𝑦 ∈ ( mVR ‘ 𝑡 ) 〈 𝑚 , ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) 〉 𝑛 ( 𝑚 ‘ 𝑦 ) ∧ ∀ 𝑑 ∀ ℎ ∀ 𝑎 ( 〈 𝑑 , ℎ , 𝑎 〉 ∈ ( mAx ‘ 𝑡 ) → ( ( ∀ 𝑦 ∀ 𝑧 ( 𝑦 𝑑 𝑧 → ( 𝑚 ‘ 𝑦 ) 𝑓 ( 𝑚 ‘ 𝑧 ) ) ∧ ℎ ⊆ ( dom 𝑛 “ { 𝑚 } ) ) → 𝑚 dom 𝑛 𝑎 ) ) ) ∧ ( ∀ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ∀ 𝑒 ∈ ( mEx ‘ 𝑡 ) ∀ 𝑦 ( 〈 𝑠 , 𝑚 〉 ( mVSubst ‘ 𝑡 ) 𝑦 → ( 𝑛 “ { 〈 𝑚 , ( 𝑠 ‘ 𝑒 ) 〉 } ) = ( 𝑛 “ { 〈 𝑦 , 𝑒 〉 } ) ) ∧ ∀ 𝑝 ∈ 𝑣 ∀ 𝑒 ∈ 𝑥 ( ( 𝑚 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) = ( 𝑝 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) → ( 𝑛 “ { 〈 𝑚 , 𝑒 〉 } ) = ( 𝑛 “ { 〈 𝑝 , 𝑒 〉 } ) ) ∧ ∀ 𝑦 ∈ 𝑢 ∀ 𝑒 ∈ 𝑥 ( ( 𝑚 “ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) ⊆ ( 𝑓 “ { 𝑦 } ) → ( 𝑛 “ { 〈 𝑚 , 𝑒 〉 } ) ⊆ ( 𝑓 “ { 𝑦 } ) ) ) ) ) |
| 140 |
139 15 14
|
wsbc |
⊢ [ ( mEval ‘ 𝑡 ) / 𝑛 ] [ ( mFresh ‘ 𝑡 ) / 𝑓 ] ( ( 𝑢 ⊆ ( ( mTC ‘ 𝑡 ) × V ) ∧ 𝑓 ∈ ( mFRel ‘ 𝑡 ) ∧ 𝑛 ∈ ( 𝑢 ↑pm ( 𝑣 × ( mEx ‘ 𝑡 ) ) ) ) ∧ ∀ 𝑚 ∈ 𝑣 ( ( ∀ 𝑒 ∈ 𝑥 ( 𝑛 “ { 〈 𝑚 , 𝑒 〉 } ) ⊆ ( 𝑢 “ { ( 1st ‘ 𝑒 ) } ) ∧ ∀ 𝑦 ∈ ( mVR ‘ 𝑡 ) 〈 𝑚 , ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) 〉 𝑛 ( 𝑚 ‘ 𝑦 ) ∧ ∀ 𝑑 ∀ ℎ ∀ 𝑎 ( 〈 𝑑 , ℎ , 𝑎 〉 ∈ ( mAx ‘ 𝑡 ) → ( ( ∀ 𝑦 ∀ 𝑧 ( 𝑦 𝑑 𝑧 → ( 𝑚 ‘ 𝑦 ) 𝑓 ( 𝑚 ‘ 𝑧 ) ) ∧ ℎ ⊆ ( dom 𝑛 “ { 𝑚 } ) ) → 𝑚 dom 𝑛 𝑎 ) ) ) ∧ ( ∀ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ∀ 𝑒 ∈ ( mEx ‘ 𝑡 ) ∀ 𝑦 ( 〈 𝑠 , 𝑚 〉 ( mVSubst ‘ 𝑡 ) 𝑦 → ( 𝑛 “ { 〈 𝑚 , ( 𝑠 ‘ 𝑒 ) 〉 } ) = ( 𝑛 “ { 〈 𝑦 , 𝑒 〉 } ) ) ∧ ∀ 𝑝 ∈ 𝑣 ∀ 𝑒 ∈ 𝑥 ( ( 𝑚 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) = ( 𝑝 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) → ( 𝑛 “ { 〈 𝑚 , 𝑒 〉 } ) = ( 𝑛 “ { 〈 𝑝 , 𝑒 〉 } ) ) ∧ ∀ 𝑦 ∈ 𝑢 ∀ 𝑒 ∈ 𝑥 ( ( 𝑚 “ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) ⊆ ( 𝑓 “ { 𝑦 } ) → ( 𝑛 “ { 〈 𝑚 , 𝑒 〉 } ) ⊆ ( 𝑓 “ { 𝑦 } ) ) ) ) ) |
| 141 |
140 12 11
|
wsbc |
⊢ [ ( mVL ‘ 𝑡 ) / 𝑣 ] [ ( mEval ‘ 𝑡 ) / 𝑛 ] [ ( mFresh ‘ 𝑡 ) / 𝑓 ] ( ( 𝑢 ⊆ ( ( mTC ‘ 𝑡 ) × V ) ∧ 𝑓 ∈ ( mFRel ‘ 𝑡 ) ∧ 𝑛 ∈ ( 𝑢 ↑pm ( 𝑣 × ( mEx ‘ 𝑡 ) ) ) ) ∧ ∀ 𝑚 ∈ 𝑣 ( ( ∀ 𝑒 ∈ 𝑥 ( 𝑛 “ { 〈 𝑚 , 𝑒 〉 } ) ⊆ ( 𝑢 “ { ( 1st ‘ 𝑒 ) } ) ∧ ∀ 𝑦 ∈ ( mVR ‘ 𝑡 ) 〈 𝑚 , ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) 〉 𝑛 ( 𝑚 ‘ 𝑦 ) ∧ ∀ 𝑑 ∀ ℎ ∀ 𝑎 ( 〈 𝑑 , ℎ , 𝑎 〉 ∈ ( mAx ‘ 𝑡 ) → ( ( ∀ 𝑦 ∀ 𝑧 ( 𝑦 𝑑 𝑧 → ( 𝑚 ‘ 𝑦 ) 𝑓 ( 𝑚 ‘ 𝑧 ) ) ∧ ℎ ⊆ ( dom 𝑛 “ { 𝑚 } ) ) → 𝑚 dom 𝑛 𝑎 ) ) ) ∧ ( ∀ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ∀ 𝑒 ∈ ( mEx ‘ 𝑡 ) ∀ 𝑦 ( 〈 𝑠 , 𝑚 〉 ( mVSubst ‘ 𝑡 ) 𝑦 → ( 𝑛 “ { 〈 𝑚 , ( 𝑠 ‘ 𝑒 ) 〉 } ) = ( 𝑛 “ { 〈 𝑦 , 𝑒 〉 } ) ) ∧ ∀ 𝑝 ∈ 𝑣 ∀ 𝑒 ∈ 𝑥 ( ( 𝑚 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) = ( 𝑝 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) → ( 𝑛 “ { 〈 𝑚 , 𝑒 〉 } ) = ( 𝑛 “ { 〈 𝑝 , 𝑒 〉 } ) ) ∧ ∀ 𝑦 ∈ 𝑢 ∀ 𝑒 ∈ 𝑥 ( ( 𝑚 “ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) ⊆ ( 𝑓 “ { 𝑦 } ) → ( 𝑛 “ { 〈 𝑚 , 𝑒 〉 } ) ⊆ ( 𝑓 “ { 𝑦 } ) ) ) ) ) |
| 142 |
141 9 8
|
wsbc |
⊢ [ ( mEx ‘ 𝑡 ) / 𝑥 ] [ ( mVL ‘ 𝑡 ) / 𝑣 ] [ ( mEval ‘ 𝑡 ) / 𝑛 ] [ ( mFresh ‘ 𝑡 ) / 𝑓 ] ( ( 𝑢 ⊆ ( ( mTC ‘ 𝑡 ) × V ) ∧ 𝑓 ∈ ( mFRel ‘ 𝑡 ) ∧ 𝑛 ∈ ( 𝑢 ↑pm ( 𝑣 × ( mEx ‘ 𝑡 ) ) ) ) ∧ ∀ 𝑚 ∈ 𝑣 ( ( ∀ 𝑒 ∈ 𝑥 ( 𝑛 “ { 〈 𝑚 , 𝑒 〉 } ) ⊆ ( 𝑢 “ { ( 1st ‘ 𝑒 ) } ) ∧ ∀ 𝑦 ∈ ( mVR ‘ 𝑡 ) 〈 𝑚 , ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) 〉 𝑛 ( 𝑚 ‘ 𝑦 ) ∧ ∀ 𝑑 ∀ ℎ ∀ 𝑎 ( 〈 𝑑 , ℎ , 𝑎 〉 ∈ ( mAx ‘ 𝑡 ) → ( ( ∀ 𝑦 ∀ 𝑧 ( 𝑦 𝑑 𝑧 → ( 𝑚 ‘ 𝑦 ) 𝑓 ( 𝑚 ‘ 𝑧 ) ) ∧ ℎ ⊆ ( dom 𝑛 “ { 𝑚 } ) ) → 𝑚 dom 𝑛 𝑎 ) ) ) ∧ ( ∀ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ∀ 𝑒 ∈ ( mEx ‘ 𝑡 ) ∀ 𝑦 ( 〈 𝑠 , 𝑚 〉 ( mVSubst ‘ 𝑡 ) 𝑦 → ( 𝑛 “ { 〈 𝑚 , ( 𝑠 ‘ 𝑒 ) 〉 } ) = ( 𝑛 “ { 〈 𝑦 , 𝑒 〉 } ) ) ∧ ∀ 𝑝 ∈ 𝑣 ∀ 𝑒 ∈ 𝑥 ( ( 𝑚 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) = ( 𝑝 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) → ( 𝑛 “ { 〈 𝑚 , 𝑒 〉 } ) = ( 𝑛 “ { 〈 𝑝 , 𝑒 〉 } ) ) ∧ ∀ 𝑦 ∈ 𝑢 ∀ 𝑒 ∈ 𝑥 ( ( 𝑚 “ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) ⊆ ( 𝑓 “ { 𝑦 } ) → ( 𝑛 “ { 〈 𝑚 , 𝑒 〉 } ) ⊆ ( 𝑓 “ { 𝑦 } ) ) ) ) ) |
| 143 |
142 6 5
|
wsbc |
⊢ [ ( mUV ‘ 𝑡 ) / 𝑢 ] [ ( mEx ‘ 𝑡 ) / 𝑥 ] [ ( mVL ‘ 𝑡 ) / 𝑣 ] [ ( mEval ‘ 𝑡 ) / 𝑛 ] [ ( mFresh ‘ 𝑡 ) / 𝑓 ] ( ( 𝑢 ⊆ ( ( mTC ‘ 𝑡 ) × V ) ∧ 𝑓 ∈ ( mFRel ‘ 𝑡 ) ∧ 𝑛 ∈ ( 𝑢 ↑pm ( 𝑣 × ( mEx ‘ 𝑡 ) ) ) ) ∧ ∀ 𝑚 ∈ 𝑣 ( ( ∀ 𝑒 ∈ 𝑥 ( 𝑛 “ { 〈 𝑚 , 𝑒 〉 } ) ⊆ ( 𝑢 “ { ( 1st ‘ 𝑒 ) } ) ∧ ∀ 𝑦 ∈ ( mVR ‘ 𝑡 ) 〈 𝑚 , ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) 〉 𝑛 ( 𝑚 ‘ 𝑦 ) ∧ ∀ 𝑑 ∀ ℎ ∀ 𝑎 ( 〈 𝑑 , ℎ , 𝑎 〉 ∈ ( mAx ‘ 𝑡 ) → ( ( ∀ 𝑦 ∀ 𝑧 ( 𝑦 𝑑 𝑧 → ( 𝑚 ‘ 𝑦 ) 𝑓 ( 𝑚 ‘ 𝑧 ) ) ∧ ℎ ⊆ ( dom 𝑛 “ { 𝑚 } ) ) → 𝑚 dom 𝑛 𝑎 ) ) ) ∧ ( ∀ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ∀ 𝑒 ∈ ( mEx ‘ 𝑡 ) ∀ 𝑦 ( 〈 𝑠 , 𝑚 〉 ( mVSubst ‘ 𝑡 ) 𝑦 → ( 𝑛 “ { 〈 𝑚 , ( 𝑠 ‘ 𝑒 ) 〉 } ) = ( 𝑛 “ { 〈 𝑦 , 𝑒 〉 } ) ) ∧ ∀ 𝑝 ∈ 𝑣 ∀ 𝑒 ∈ 𝑥 ( ( 𝑚 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) = ( 𝑝 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) → ( 𝑛 “ { 〈 𝑚 , 𝑒 〉 } ) = ( 𝑛 “ { 〈 𝑝 , 𝑒 〉 } ) ) ∧ ∀ 𝑦 ∈ 𝑢 ∀ 𝑒 ∈ 𝑥 ( ( 𝑚 “ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) ⊆ ( 𝑓 “ { 𝑦 } ) → ( 𝑛 “ { 〈 𝑚 , 𝑒 〉 } ) ⊆ ( 𝑓 “ { 𝑦 } ) ) ) ) ) |
| 144 |
143 1 2
|
crab |
⊢ { 𝑡 ∈ mFS ∣ [ ( mUV ‘ 𝑡 ) / 𝑢 ] [ ( mEx ‘ 𝑡 ) / 𝑥 ] [ ( mVL ‘ 𝑡 ) / 𝑣 ] [ ( mEval ‘ 𝑡 ) / 𝑛 ] [ ( mFresh ‘ 𝑡 ) / 𝑓 ] ( ( 𝑢 ⊆ ( ( mTC ‘ 𝑡 ) × V ) ∧ 𝑓 ∈ ( mFRel ‘ 𝑡 ) ∧ 𝑛 ∈ ( 𝑢 ↑pm ( 𝑣 × ( mEx ‘ 𝑡 ) ) ) ) ∧ ∀ 𝑚 ∈ 𝑣 ( ( ∀ 𝑒 ∈ 𝑥 ( 𝑛 “ { 〈 𝑚 , 𝑒 〉 } ) ⊆ ( 𝑢 “ { ( 1st ‘ 𝑒 ) } ) ∧ ∀ 𝑦 ∈ ( mVR ‘ 𝑡 ) 〈 𝑚 , ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) 〉 𝑛 ( 𝑚 ‘ 𝑦 ) ∧ ∀ 𝑑 ∀ ℎ ∀ 𝑎 ( 〈 𝑑 , ℎ , 𝑎 〉 ∈ ( mAx ‘ 𝑡 ) → ( ( ∀ 𝑦 ∀ 𝑧 ( 𝑦 𝑑 𝑧 → ( 𝑚 ‘ 𝑦 ) 𝑓 ( 𝑚 ‘ 𝑧 ) ) ∧ ℎ ⊆ ( dom 𝑛 “ { 𝑚 } ) ) → 𝑚 dom 𝑛 𝑎 ) ) ) ∧ ( ∀ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ∀ 𝑒 ∈ ( mEx ‘ 𝑡 ) ∀ 𝑦 ( 〈 𝑠 , 𝑚 〉 ( mVSubst ‘ 𝑡 ) 𝑦 → ( 𝑛 “ { 〈 𝑚 , ( 𝑠 ‘ 𝑒 ) 〉 } ) = ( 𝑛 “ { 〈 𝑦 , 𝑒 〉 } ) ) ∧ ∀ 𝑝 ∈ 𝑣 ∀ 𝑒 ∈ 𝑥 ( ( 𝑚 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) = ( 𝑝 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) → ( 𝑛 “ { 〈 𝑚 , 𝑒 〉 } ) = ( 𝑛 “ { 〈 𝑝 , 𝑒 〉 } ) ) ∧ ∀ 𝑦 ∈ 𝑢 ∀ 𝑒 ∈ 𝑥 ( ( 𝑚 “ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) ⊆ ( 𝑓 “ { 𝑦 } ) → ( 𝑛 “ { 〈 𝑚 , 𝑒 〉 } ) ⊆ ( 𝑓 “ { 𝑦 } ) ) ) ) ) } |
| 145 |
0 144
|
wceq |
⊢ mMdl = { 𝑡 ∈ mFS ∣ [ ( mUV ‘ 𝑡 ) / 𝑢 ] [ ( mEx ‘ 𝑡 ) / 𝑥 ] [ ( mVL ‘ 𝑡 ) / 𝑣 ] [ ( mEval ‘ 𝑡 ) / 𝑛 ] [ ( mFresh ‘ 𝑡 ) / 𝑓 ] ( ( 𝑢 ⊆ ( ( mTC ‘ 𝑡 ) × V ) ∧ 𝑓 ∈ ( mFRel ‘ 𝑡 ) ∧ 𝑛 ∈ ( 𝑢 ↑pm ( 𝑣 × ( mEx ‘ 𝑡 ) ) ) ) ∧ ∀ 𝑚 ∈ 𝑣 ( ( ∀ 𝑒 ∈ 𝑥 ( 𝑛 “ { 〈 𝑚 , 𝑒 〉 } ) ⊆ ( 𝑢 “ { ( 1st ‘ 𝑒 ) } ) ∧ ∀ 𝑦 ∈ ( mVR ‘ 𝑡 ) 〈 𝑚 , ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) 〉 𝑛 ( 𝑚 ‘ 𝑦 ) ∧ ∀ 𝑑 ∀ ℎ ∀ 𝑎 ( 〈 𝑑 , ℎ , 𝑎 〉 ∈ ( mAx ‘ 𝑡 ) → ( ( ∀ 𝑦 ∀ 𝑧 ( 𝑦 𝑑 𝑧 → ( 𝑚 ‘ 𝑦 ) 𝑓 ( 𝑚 ‘ 𝑧 ) ) ∧ ℎ ⊆ ( dom 𝑛 “ { 𝑚 } ) ) → 𝑚 dom 𝑛 𝑎 ) ) ) ∧ ( ∀ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ∀ 𝑒 ∈ ( mEx ‘ 𝑡 ) ∀ 𝑦 ( 〈 𝑠 , 𝑚 〉 ( mVSubst ‘ 𝑡 ) 𝑦 → ( 𝑛 “ { 〈 𝑚 , ( 𝑠 ‘ 𝑒 ) 〉 } ) = ( 𝑛 “ { 〈 𝑦 , 𝑒 〉 } ) ) ∧ ∀ 𝑝 ∈ 𝑣 ∀ 𝑒 ∈ 𝑥 ( ( 𝑚 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) = ( 𝑝 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) → ( 𝑛 “ { 〈 𝑚 , 𝑒 〉 } ) = ( 𝑛 “ { 〈 𝑝 , 𝑒 〉 } ) ) ∧ ∀ 𝑦 ∈ 𝑢 ∀ 𝑒 ∈ 𝑥 ( ( 𝑚 “ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) ⊆ ( 𝑓 “ { 𝑦 } ) → ( 𝑛 “ { 〈 𝑚 , 𝑒 〉 } ) ⊆ ( 𝑓 “ { 𝑦 } ) ) ) ) ) } |