Metamath Proof Explorer


Definition df-mdl

Description: Define the set of models of a formal system. (Contributed by Mario Carneiro, 14-Jul-2016)

Ref Expression
Assertion df-mdl mMdl = { 𝑡 ∈ mFS ∣ [ ( mUV ‘ 𝑡 ) / 𝑢 ] [ ( mEx ‘ 𝑡 ) / 𝑥 ] [ ( mVL ‘ 𝑡 ) / 𝑣 ] [ ( mEval ‘ 𝑡 ) / 𝑛 ] [ ( mFresh ‘ 𝑡 ) / 𝑓 ] ( ( 𝑢 ⊆ ( ( mTC ‘ 𝑡 ) × V ) ∧ 𝑓 ∈ ( mFRel ‘ 𝑡 ) ∧ 𝑛 ∈ ( 𝑢pm ( 𝑣 × ( mEx ‘ 𝑡 ) ) ) ) ∧ ∀ 𝑚𝑣 ( ( ∀ 𝑒𝑥 ( 𝑛 “ { ⟨ 𝑚 , 𝑒 ⟩ } ) ⊆ ( 𝑢 “ { ( 1st𝑒 ) } ) ∧ ∀ 𝑦 ∈ ( mVR ‘ 𝑡 ) ⟨ 𝑚 , ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ⟩ 𝑛 ( 𝑚𝑦 ) ∧ ∀ 𝑑𝑎 ( ⟨ 𝑑 , , 𝑎 ⟩ ∈ ( mAx ‘ 𝑡 ) → ( ( ∀ 𝑦𝑧 ( 𝑦 𝑑 𝑧 → ( 𝑚𝑦 ) 𝑓 ( 𝑚𝑧 ) ) ∧ ⊆ ( dom 𝑛 “ { 𝑚 } ) ) → 𝑚 dom 𝑛 𝑎 ) ) ) ∧ ( ∀ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ∀ 𝑒 ∈ ( mEx ‘ 𝑡 ) ∀ 𝑦 ( ⟨ 𝑠 , 𝑚 ⟩ ( mVSubst ‘ 𝑡 ) 𝑦 → ( 𝑛 “ { ⟨ 𝑚 , ( 𝑠𝑒 ) ⟩ } ) = ( 𝑛 “ { ⟨ 𝑦 , 𝑒 ⟩ } ) ) ∧ ∀ 𝑝𝑣𝑒𝑥 ( ( 𝑚 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) = ( 𝑝 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) → ( 𝑛 “ { ⟨ 𝑚 , 𝑒 ⟩ } ) = ( 𝑛 “ { ⟨ 𝑝 , 𝑒 ⟩ } ) ) ∧ ∀ 𝑦𝑢𝑒𝑥 ( ( 𝑚 “ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) ⊆ ( 𝑓 “ { 𝑦 } ) → ( 𝑛 “ { ⟨ 𝑚 , 𝑒 ⟩ } ) ⊆ ( 𝑓 “ { 𝑦 } ) ) ) ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmdl mMdl
1 vt 𝑡
2 cmfs mFS
3 cmuv mUV
4 1 cv 𝑡
5 4 3 cfv ( mUV ‘ 𝑡 )
6 vu 𝑢
7 cmex mEx
8 4 7 cfv ( mEx ‘ 𝑡 )
9 vx 𝑥
10 cmvl mVL
11 4 10 cfv ( mVL ‘ 𝑡 )
12 vv 𝑣
13 cmevl mEval
14 4 13 cfv ( mEval ‘ 𝑡 )
15 vn 𝑛
16 cmfsh mFresh
17 4 16 cfv ( mFresh ‘ 𝑡 )
18 vf 𝑓
19 6 cv 𝑢
20 cmtc mTC
21 4 20 cfv ( mTC ‘ 𝑡 )
22 cvv V
23 21 22 cxp ( ( mTC ‘ 𝑡 ) × V )
24 19 23 wss 𝑢 ⊆ ( ( mTC ‘ 𝑡 ) × V )
25 18 cv 𝑓
26 cmfr mFRel
27 4 26 cfv ( mFRel ‘ 𝑡 )
28 25 27 wcel 𝑓 ∈ ( mFRel ‘ 𝑡 )
29 15 cv 𝑛
30 cpm pm
31 12 cv 𝑣
32 31 8 cxp ( 𝑣 × ( mEx ‘ 𝑡 ) )
33 19 32 30 co ( 𝑢pm ( 𝑣 × ( mEx ‘ 𝑡 ) ) )
34 29 33 wcel 𝑛 ∈ ( 𝑢pm ( 𝑣 × ( mEx ‘ 𝑡 ) ) )
35 24 28 34 w3a ( 𝑢 ⊆ ( ( mTC ‘ 𝑡 ) × V ) ∧ 𝑓 ∈ ( mFRel ‘ 𝑡 ) ∧ 𝑛 ∈ ( 𝑢pm ( 𝑣 × ( mEx ‘ 𝑡 ) ) ) )
36 vm 𝑚
37 ve 𝑒
38 9 cv 𝑥
39 36 cv 𝑚
40 37 cv 𝑒
41 39 40 cop 𝑚 , 𝑒
42 41 csn { ⟨ 𝑚 , 𝑒 ⟩ }
43 29 42 cima ( 𝑛 “ { ⟨ 𝑚 , 𝑒 ⟩ } )
44 c1st 1st
45 40 44 cfv ( 1st𝑒 )
46 45 csn { ( 1st𝑒 ) }
47 19 46 cima ( 𝑢 “ { ( 1st𝑒 ) } )
48 43 47 wss ( 𝑛 “ { ⟨ 𝑚 , 𝑒 ⟩ } ) ⊆ ( 𝑢 “ { ( 1st𝑒 ) } )
49 48 37 38 wral 𝑒𝑥 ( 𝑛 “ { ⟨ 𝑚 , 𝑒 ⟩ } ) ⊆ ( 𝑢 “ { ( 1st𝑒 ) } )
50 vy 𝑦
51 cmvar mVR
52 4 51 cfv ( mVR ‘ 𝑡 )
53 cmvh mVH
54 4 53 cfv ( mVH ‘ 𝑡 )
55 50 cv 𝑦
56 55 54 cfv ( ( mVH ‘ 𝑡 ) ‘ 𝑦 )
57 39 56 cop 𝑚 , ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ⟩
58 55 39 cfv ( 𝑚𝑦 )
59 57 58 29 wbr 𝑚 , ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ⟩ 𝑛 ( 𝑚𝑦 )
60 59 50 52 wral 𝑦 ∈ ( mVR ‘ 𝑡 ) ⟨ 𝑚 , ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ⟩ 𝑛 ( 𝑚𝑦 )
61 vd 𝑑
62 vh
63 va 𝑎
64 61 cv 𝑑
65 62 cv
66 63 cv 𝑎
67 64 65 66 cotp 𝑑 , , 𝑎
68 cmax mAx
69 4 68 cfv ( mAx ‘ 𝑡 )
70 67 69 wcel 𝑑 , , 𝑎 ⟩ ∈ ( mAx ‘ 𝑡 )
71 vz 𝑧
72 71 cv 𝑧
73 55 72 64 wbr 𝑦 𝑑 𝑧
74 72 39 cfv ( 𝑚𝑧 )
75 58 74 25 wbr ( 𝑚𝑦 ) 𝑓 ( 𝑚𝑧 )
76 73 75 wi ( 𝑦 𝑑 𝑧 → ( 𝑚𝑦 ) 𝑓 ( 𝑚𝑧 ) )
77 76 71 wal 𝑧 ( 𝑦 𝑑 𝑧 → ( 𝑚𝑦 ) 𝑓 ( 𝑚𝑧 ) )
78 77 50 wal 𝑦𝑧 ( 𝑦 𝑑 𝑧 → ( 𝑚𝑦 ) 𝑓 ( 𝑚𝑧 ) )
79 29 cdm dom 𝑛
80 39 csn { 𝑚 }
81 79 80 cima ( dom 𝑛 “ { 𝑚 } )
82 65 81 wss ⊆ ( dom 𝑛 “ { 𝑚 } )
83 78 82 wa ( ∀ 𝑦𝑧 ( 𝑦 𝑑 𝑧 → ( 𝑚𝑦 ) 𝑓 ( 𝑚𝑧 ) ) ∧ ⊆ ( dom 𝑛 “ { 𝑚 } ) )
84 39 66 79 wbr 𝑚 dom 𝑛 𝑎
85 83 84 wi ( ( ∀ 𝑦𝑧 ( 𝑦 𝑑 𝑧 → ( 𝑚𝑦 ) 𝑓 ( 𝑚𝑧 ) ) ∧ ⊆ ( dom 𝑛 “ { 𝑚 } ) ) → 𝑚 dom 𝑛 𝑎 )
86 70 85 wi ( ⟨ 𝑑 , , 𝑎 ⟩ ∈ ( mAx ‘ 𝑡 ) → ( ( ∀ 𝑦𝑧 ( 𝑦 𝑑 𝑧 → ( 𝑚𝑦 ) 𝑓 ( 𝑚𝑧 ) ) ∧ ⊆ ( dom 𝑛 “ { 𝑚 } ) ) → 𝑚 dom 𝑛 𝑎 ) )
87 86 63 wal 𝑎 ( ⟨ 𝑑 , , 𝑎 ⟩ ∈ ( mAx ‘ 𝑡 ) → ( ( ∀ 𝑦𝑧 ( 𝑦 𝑑 𝑧 → ( 𝑚𝑦 ) 𝑓 ( 𝑚𝑧 ) ) ∧ ⊆ ( dom 𝑛 “ { 𝑚 } ) ) → 𝑚 dom 𝑛 𝑎 ) )
88 87 62 wal 𝑎 ( ⟨ 𝑑 , , 𝑎 ⟩ ∈ ( mAx ‘ 𝑡 ) → ( ( ∀ 𝑦𝑧 ( 𝑦 𝑑 𝑧 → ( 𝑚𝑦 ) 𝑓 ( 𝑚𝑧 ) ) ∧ ⊆ ( dom 𝑛 “ { 𝑚 } ) ) → 𝑚 dom 𝑛 𝑎 ) )
89 88 61 wal 𝑑𝑎 ( ⟨ 𝑑 , , 𝑎 ⟩ ∈ ( mAx ‘ 𝑡 ) → ( ( ∀ 𝑦𝑧 ( 𝑦 𝑑 𝑧 → ( 𝑚𝑦 ) 𝑓 ( 𝑚𝑧 ) ) ∧ ⊆ ( dom 𝑛 “ { 𝑚 } ) ) → 𝑚 dom 𝑛 𝑎 ) )
90 49 60 89 w3a ( ∀ 𝑒𝑥 ( 𝑛 “ { ⟨ 𝑚 , 𝑒 ⟩ } ) ⊆ ( 𝑢 “ { ( 1st𝑒 ) } ) ∧ ∀ 𝑦 ∈ ( mVR ‘ 𝑡 ) ⟨ 𝑚 , ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ⟩ 𝑛 ( 𝑚𝑦 ) ∧ ∀ 𝑑𝑎 ( ⟨ 𝑑 , , 𝑎 ⟩ ∈ ( mAx ‘ 𝑡 ) → ( ( ∀ 𝑦𝑧 ( 𝑦 𝑑 𝑧 → ( 𝑚𝑦 ) 𝑓 ( 𝑚𝑧 ) ) ∧ ⊆ ( dom 𝑛 “ { 𝑚 } ) ) → 𝑚 dom 𝑛 𝑎 ) ) )
91 vs 𝑠
92 cmsub mSubst
93 4 92 cfv ( mSubst ‘ 𝑡 )
94 93 crn ran ( mSubst ‘ 𝑡 )
95 91 cv 𝑠
96 95 39 cop 𝑠 , 𝑚
97 cmvsb mVSubst
98 4 97 cfv ( mVSubst ‘ 𝑡 )
99 96 55 98 wbr 𝑠 , 𝑚 ⟩ ( mVSubst ‘ 𝑡 ) 𝑦
100 40 95 cfv ( 𝑠𝑒 )
101 39 100 cop 𝑚 , ( 𝑠𝑒 ) ⟩
102 101 csn { ⟨ 𝑚 , ( 𝑠𝑒 ) ⟩ }
103 29 102 cima ( 𝑛 “ { ⟨ 𝑚 , ( 𝑠𝑒 ) ⟩ } )
104 55 40 cop 𝑦 , 𝑒
105 104 csn { ⟨ 𝑦 , 𝑒 ⟩ }
106 29 105 cima ( 𝑛 “ { ⟨ 𝑦 , 𝑒 ⟩ } )
107 103 106 wceq ( 𝑛 “ { ⟨ 𝑚 , ( 𝑠𝑒 ) ⟩ } ) = ( 𝑛 “ { ⟨ 𝑦 , 𝑒 ⟩ } )
108 99 107 wi ( ⟨ 𝑠 , 𝑚 ⟩ ( mVSubst ‘ 𝑡 ) 𝑦 → ( 𝑛 “ { ⟨ 𝑚 , ( 𝑠𝑒 ) ⟩ } ) = ( 𝑛 “ { ⟨ 𝑦 , 𝑒 ⟩ } ) )
109 108 50 wal 𝑦 ( ⟨ 𝑠 , 𝑚 ⟩ ( mVSubst ‘ 𝑡 ) 𝑦 → ( 𝑛 “ { ⟨ 𝑚 , ( 𝑠𝑒 ) ⟩ } ) = ( 𝑛 “ { ⟨ 𝑦 , 𝑒 ⟩ } ) )
110 109 37 8 wral 𝑒 ∈ ( mEx ‘ 𝑡 ) ∀ 𝑦 ( ⟨ 𝑠 , 𝑚 ⟩ ( mVSubst ‘ 𝑡 ) 𝑦 → ( 𝑛 “ { ⟨ 𝑚 , ( 𝑠𝑒 ) ⟩ } ) = ( 𝑛 “ { ⟨ 𝑦 , 𝑒 ⟩ } ) )
111 110 91 94 wral 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ∀ 𝑒 ∈ ( mEx ‘ 𝑡 ) ∀ 𝑦 ( ⟨ 𝑠 , 𝑚 ⟩ ( mVSubst ‘ 𝑡 ) 𝑦 → ( 𝑛 “ { ⟨ 𝑚 , ( 𝑠𝑒 ) ⟩ } ) = ( 𝑛 “ { ⟨ 𝑦 , 𝑒 ⟩ } ) )
112 vp 𝑝
113 cmvrs mVars
114 4 113 cfv ( mVars ‘ 𝑡 )
115 40 114 cfv ( ( mVars ‘ 𝑡 ) ‘ 𝑒 )
116 39 115 cres ( 𝑚 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) )
117 112 cv 𝑝
118 117 115 cres ( 𝑝 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) )
119 116 118 wceq ( 𝑚 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) = ( 𝑝 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) )
120 117 40 cop 𝑝 , 𝑒
121 120 csn { ⟨ 𝑝 , 𝑒 ⟩ }
122 29 121 cima ( 𝑛 “ { ⟨ 𝑝 , 𝑒 ⟩ } )
123 43 122 wceq ( 𝑛 “ { ⟨ 𝑚 , 𝑒 ⟩ } ) = ( 𝑛 “ { ⟨ 𝑝 , 𝑒 ⟩ } )
124 119 123 wi ( ( 𝑚 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) = ( 𝑝 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) → ( 𝑛 “ { ⟨ 𝑚 , 𝑒 ⟩ } ) = ( 𝑛 “ { ⟨ 𝑝 , 𝑒 ⟩ } ) )
125 124 37 38 wral 𝑒𝑥 ( ( 𝑚 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) = ( 𝑝 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) → ( 𝑛 “ { ⟨ 𝑚 , 𝑒 ⟩ } ) = ( 𝑛 “ { ⟨ 𝑝 , 𝑒 ⟩ } ) )
126 125 112 31 wral 𝑝𝑣𝑒𝑥 ( ( 𝑚 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) = ( 𝑝 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) → ( 𝑛 “ { ⟨ 𝑚 , 𝑒 ⟩ } ) = ( 𝑛 “ { ⟨ 𝑝 , 𝑒 ⟩ } ) )
127 39 115 cima ( 𝑚 “ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) )
128 55 csn { 𝑦 }
129 25 128 cima ( 𝑓 “ { 𝑦 } )
130 127 129 wss ( 𝑚 “ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) ⊆ ( 𝑓 “ { 𝑦 } )
131 43 129 wss ( 𝑛 “ { ⟨ 𝑚 , 𝑒 ⟩ } ) ⊆ ( 𝑓 “ { 𝑦 } )
132 130 131 wi ( ( 𝑚 “ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) ⊆ ( 𝑓 “ { 𝑦 } ) → ( 𝑛 “ { ⟨ 𝑚 , 𝑒 ⟩ } ) ⊆ ( 𝑓 “ { 𝑦 } ) )
133 132 37 38 wral 𝑒𝑥 ( ( 𝑚 “ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) ⊆ ( 𝑓 “ { 𝑦 } ) → ( 𝑛 “ { ⟨ 𝑚 , 𝑒 ⟩ } ) ⊆ ( 𝑓 “ { 𝑦 } ) )
134 133 50 19 wral 𝑦𝑢𝑒𝑥 ( ( 𝑚 “ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) ⊆ ( 𝑓 “ { 𝑦 } ) → ( 𝑛 “ { ⟨ 𝑚 , 𝑒 ⟩ } ) ⊆ ( 𝑓 “ { 𝑦 } ) )
135 111 126 134 w3a ( ∀ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ∀ 𝑒 ∈ ( mEx ‘ 𝑡 ) ∀ 𝑦 ( ⟨ 𝑠 , 𝑚 ⟩ ( mVSubst ‘ 𝑡 ) 𝑦 → ( 𝑛 “ { ⟨ 𝑚 , ( 𝑠𝑒 ) ⟩ } ) = ( 𝑛 “ { ⟨ 𝑦 , 𝑒 ⟩ } ) ) ∧ ∀ 𝑝𝑣𝑒𝑥 ( ( 𝑚 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) = ( 𝑝 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) → ( 𝑛 “ { ⟨ 𝑚 , 𝑒 ⟩ } ) = ( 𝑛 “ { ⟨ 𝑝 , 𝑒 ⟩ } ) ) ∧ ∀ 𝑦𝑢𝑒𝑥 ( ( 𝑚 “ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) ⊆ ( 𝑓 “ { 𝑦 } ) → ( 𝑛 “ { ⟨ 𝑚 , 𝑒 ⟩ } ) ⊆ ( 𝑓 “ { 𝑦 } ) ) )
136 90 135 wa ( ( ∀ 𝑒𝑥 ( 𝑛 “ { ⟨ 𝑚 , 𝑒 ⟩ } ) ⊆ ( 𝑢 “ { ( 1st𝑒 ) } ) ∧ ∀ 𝑦 ∈ ( mVR ‘ 𝑡 ) ⟨ 𝑚 , ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ⟩ 𝑛 ( 𝑚𝑦 ) ∧ ∀ 𝑑𝑎 ( ⟨ 𝑑 , , 𝑎 ⟩ ∈ ( mAx ‘ 𝑡 ) → ( ( ∀ 𝑦𝑧 ( 𝑦 𝑑 𝑧 → ( 𝑚𝑦 ) 𝑓 ( 𝑚𝑧 ) ) ∧ ⊆ ( dom 𝑛 “ { 𝑚 } ) ) → 𝑚 dom 𝑛 𝑎 ) ) ) ∧ ( ∀ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ∀ 𝑒 ∈ ( mEx ‘ 𝑡 ) ∀ 𝑦 ( ⟨ 𝑠 , 𝑚 ⟩ ( mVSubst ‘ 𝑡 ) 𝑦 → ( 𝑛 “ { ⟨ 𝑚 , ( 𝑠𝑒 ) ⟩ } ) = ( 𝑛 “ { ⟨ 𝑦 , 𝑒 ⟩ } ) ) ∧ ∀ 𝑝𝑣𝑒𝑥 ( ( 𝑚 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) = ( 𝑝 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) → ( 𝑛 “ { ⟨ 𝑚 , 𝑒 ⟩ } ) = ( 𝑛 “ { ⟨ 𝑝 , 𝑒 ⟩ } ) ) ∧ ∀ 𝑦𝑢𝑒𝑥 ( ( 𝑚 “ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) ⊆ ( 𝑓 “ { 𝑦 } ) → ( 𝑛 “ { ⟨ 𝑚 , 𝑒 ⟩ } ) ⊆ ( 𝑓 “ { 𝑦 } ) ) ) )
137 136 36 31 wral 𝑚𝑣 ( ( ∀ 𝑒𝑥 ( 𝑛 “ { ⟨ 𝑚 , 𝑒 ⟩ } ) ⊆ ( 𝑢 “ { ( 1st𝑒 ) } ) ∧ ∀ 𝑦 ∈ ( mVR ‘ 𝑡 ) ⟨ 𝑚 , ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ⟩ 𝑛 ( 𝑚𝑦 ) ∧ ∀ 𝑑𝑎 ( ⟨ 𝑑 , , 𝑎 ⟩ ∈ ( mAx ‘ 𝑡 ) → ( ( ∀ 𝑦𝑧 ( 𝑦 𝑑 𝑧 → ( 𝑚𝑦 ) 𝑓 ( 𝑚𝑧 ) ) ∧ ⊆ ( dom 𝑛 “ { 𝑚 } ) ) → 𝑚 dom 𝑛 𝑎 ) ) ) ∧ ( ∀ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ∀ 𝑒 ∈ ( mEx ‘ 𝑡 ) ∀ 𝑦 ( ⟨ 𝑠 , 𝑚 ⟩ ( mVSubst ‘ 𝑡 ) 𝑦 → ( 𝑛 “ { ⟨ 𝑚 , ( 𝑠𝑒 ) ⟩ } ) = ( 𝑛 “ { ⟨ 𝑦 , 𝑒 ⟩ } ) ) ∧ ∀ 𝑝𝑣𝑒𝑥 ( ( 𝑚 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) = ( 𝑝 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) → ( 𝑛 “ { ⟨ 𝑚 , 𝑒 ⟩ } ) = ( 𝑛 “ { ⟨ 𝑝 , 𝑒 ⟩ } ) ) ∧ ∀ 𝑦𝑢𝑒𝑥 ( ( 𝑚 “ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) ⊆ ( 𝑓 “ { 𝑦 } ) → ( 𝑛 “ { ⟨ 𝑚 , 𝑒 ⟩ } ) ⊆ ( 𝑓 “ { 𝑦 } ) ) ) )
138 35 137 wa ( ( 𝑢 ⊆ ( ( mTC ‘ 𝑡 ) × V ) ∧ 𝑓 ∈ ( mFRel ‘ 𝑡 ) ∧ 𝑛 ∈ ( 𝑢pm ( 𝑣 × ( mEx ‘ 𝑡 ) ) ) ) ∧ ∀ 𝑚𝑣 ( ( ∀ 𝑒𝑥 ( 𝑛 “ { ⟨ 𝑚 , 𝑒 ⟩ } ) ⊆ ( 𝑢 “ { ( 1st𝑒 ) } ) ∧ ∀ 𝑦 ∈ ( mVR ‘ 𝑡 ) ⟨ 𝑚 , ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ⟩ 𝑛 ( 𝑚𝑦 ) ∧ ∀ 𝑑𝑎 ( ⟨ 𝑑 , , 𝑎 ⟩ ∈ ( mAx ‘ 𝑡 ) → ( ( ∀ 𝑦𝑧 ( 𝑦 𝑑 𝑧 → ( 𝑚𝑦 ) 𝑓 ( 𝑚𝑧 ) ) ∧ ⊆ ( dom 𝑛 “ { 𝑚 } ) ) → 𝑚 dom 𝑛 𝑎 ) ) ) ∧ ( ∀ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ∀ 𝑒 ∈ ( mEx ‘ 𝑡 ) ∀ 𝑦 ( ⟨ 𝑠 , 𝑚 ⟩ ( mVSubst ‘ 𝑡 ) 𝑦 → ( 𝑛 “ { ⟨ 𝑚 , ( 𝑠𝑒 ) ⟩ } ) = ( 𝑛 “ { ⟨ 𝑦 , 𝑒 ⟩ } ) ) ∧ ∀ 𝑝𝑣𝑒𝑥 ( ( 𝑚 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) = ( 𝑝 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) → ( 𝑛 “ { ⟨ 𝑚 , 𝑒 ⟩ } ) = ( 𝑛 “ { ⟨ 𝑝 , 𝑒 ⟩ } ) ) ∧ ∀ 𝑦𝑢𝑒𝑥 ( ( 𝑚 “ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) ⊆ ( 𝑓 “ { 𝑦 } ) → ( 𝑛 “ { ⟨ 𝑚 , 𝑒 ⟩ } ) ⊆ ( 𝑓 “ { 𝑦 } ) ) ) ) )
139 138 18 17 wsbc [ ( mFresh ‘ 𝑡 ) / 𝑓 ] ( ( 𝑢 ⊆ ( ( mTC ‘ 𝑡 ) × V ) ∧ 𝑓 ∈ ( mFRel ‘ 𝑡 ) ∧ 𝑛 ∈ ( 𝑢pm ( 𝑣 × ( mEx ‘ 𝑡 ) ) ) ) ∧ ∀ 𝑚𝑣 ( ( ∀ 𝑒𝑥 ( 𝑛 “ { ⟨ 𝑚 , 𝑒 ⟩ } ) ⊆ ( 𝑢 “ { ( 1st𝑒 ) } ) ∧ ∀ 𝑦 ∈ ( mVR ‘ 𝑡 ) ⟨ 𝑚 , ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ⟩ 𝑛 ( 𝑚𝑦 ) ∧ ∀ 𝑑𝑎 ( ⟨ 𝑑 , , 𝑎 ⟩ ∈ ( mAx ‘ 𝑡 ) → ( ( ∀ 𝑦𝑧 ( 𝑦 𝑑 𝑧 → ( 𝑚𝑦 ) 𝑓 ( 𝑚𝑧 ) ) ∧ ⊆ ( dom 𝑛 “ { 𝑚 } ) ) → 𝑚 dom 𝑛 𝑎 ) ) ) ∧ ( ∀ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ∀ 𝑒 ∈ ( mEx ‘ 𝑡 ) ∀ 𝑦 ( ⟨ 𝑠 , 𝑚 ⟩ ( mVSubst ‘ 𝑡 ) 𝑦 → ( 𝑛 “ { ⟨ 𝑚 , ( 𝑠𝑒 ) ⟩ } ) = ( 𝑛 “ { ⟨ 𝑦 , 𝑒 ⟩ } ) ) ∧ ∀ 𝑝𝑣𝑒𝑥 ( ( 𝑚 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) = ( 𝑝 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) → ( 𝑛 “ { ⟨ 𝑚 , 𝑒 ⟩ } ) = ( 𝑛 “ { ⟨ 𝑝 , 𝑒 ⟩ } ) ) ∧ ∀ 𝑦𝑢𝑒𝑥 ( ( 𝑚 “ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) ⊆ ( 𝑓 “ { 𝑦 } ) → ( 𝑛 “ { ⟨ 𝑚 , 𝑒 ⟩ } ) ⊆ ( 𝑓 “ { 𝑦 } ) ) ) ) )
140 139 15 14 wsbc [ ( mEval ‘ 𝑡 ) / 𝑛 ] [ ( mFresh ‘ 𝑡 ) / 𝑓 ] ( ( 𝑢 ⊆ ( ( mTC ‘ 𝑡 ) × V ) ∧ 𝑓 ∈ ( mFRel ‘ 𝑡 ) ∧ 𝑛 ∈ ( 𝑢pm ( 𝑣 × ( mEx ‘ 𝑡 ) ) ) ) ∧ ∀ 𝑚𝑣 ( ( ∀ 𝑒𝑥 ( 𝑛 “ { ⟨ 𝑚 , 𝑒 ⟩ } ) ⊆ ( 𝑢 “ { ( 1st𝑒 ) } ) ∧ ∀ 𝑦 ∈ ( mVR ‘ 𝑡 ) ⟨ 𝑚 , ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ⟩ 𝑛 ( 𝑚𝑦 ) ∧ ∀ 𝑑𝑎 ( ⟨ 𝑑 , , 𝑎 ⟩ ∈ ( mAx ‘ 𝑡 ) → ( ( ∀ 𝑦𝑧 ( 𝑦 𝑑 𝑧 → ( 𝑚𝑦 ) 𝑓 ( 𝑚𝑧 ) ) ∧ ⊆ ( dom 𝑛 “ { 𝑚 } ) ) → 𝑚 dom 𝑛 𝑎 ) ) ) ∧ ( ∀ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ∀ 𝑒 ∈ ( mEx ‘ 𝑡 ) ∀ 𝑦 ( ⟨ 𝑠 , 𝑚 ⟩ ( mVSubst ‘ 𝑡 ) 𝑦 → ( 𝑛 “ { ⟨ 𝑚 , ( 𝑠𝑒 ) ⟩ } ) = ( 𝑛 “ { ⟨ 𝑦 , 𝑒 ⟩ } ) ) ∧ ∀ 𝑝𝑣𝑒𝑥 ( ( 𝑚 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) = ( 𝑝 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) → ( 𝑛 “ { ⟨ 𝑚 , 𝑒 ⟩ } ) = ( 𝑛 “ { ⟨ 𝑝 , 𝑒 ⟩ } ) ) ∧ ∀ 𝑦𝑢𝑒𝑥 ( ( 𝑚 “ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) ⊆ ( 𝑓 “ { 𝑦 } ) → ( 𝑛 “ { ⟨ 𝑚 , 𝑒 ⟩ } ) ⊆ ( 𝑓 “ { 𝑦 } ) ) ) ) )
141 140 12 11 wsbc [ ( mVL ‘ 𝑡 ) / 𝑣 ] [ ( mEval ‘ 𝑡 ) / 𝑛 ] [ ( mFresh ‘ 𝑡 ) / 𝑓 ] ( ( 𝑢 ⊆ ( ( mTC ‘ 𝑡 ) × V ) ∧ 𝑓 ∈ ( mFRel ‘ 𝑡 ) ∧ 𝑛 ∈ ( 𝑢pm ( 𝑣 × ( mEx ‘ 𝑡 ) ) ) ) ∧ ∀ 𝑚𝑣 ( ( ∀ 𝑒𝑥 ( 𝑛 “ { ⟨ 𝑚 , 𝑒 ⟩ } ) ⊆ ( 𝑢 “ { ( 1st𝑒 ) } ) ∧ ∀ 𝑦 ∈ ( mVR ‘ 𝑡 ) ⟨ 𝑚 , ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ⟩ 𝑛 ( 𝑚𝑦 ) ∧ ∀ 𝑑𝑎 ( ⟨ 𝑑 , , 𝑎 ⟩ ∈ ( mAx ‘ 𝑡 ) → ( ( ∀ 𝑦𝑧 ( 𝑦 𝑑 𝑧 → ( 𝑚𝑦 ) 𝑓 ( 𝑚𝑧 ) ) ∧ ⊆ ( dom 𝑛 “ { 𝑚 } ) ) → 𝑚 dom 𝑛 𝑎 ) ) ) ∧ ( ∀ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ∀ 𝑒 ∈ ( mEx ‘ 𝑡 ) ∀ 𝑦 ( ⟨ 𝑠 , 𝑚 ⟩ ( mVSubst ‘ 𝑡 ) 𝑦 → ( 𝑛 “ { ⟨ 𝑚 , ( 𝑠𝑒 ) ⟩ } ) = ( 𝑛 “ { ⟨ 𝑦 , 𝑒 ⟩ } ) ) ∧ ∀ 𝑝𝑣𝑒𝑥 ( ( 𝑚 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) = ( 𝑝 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) → ( 𝑛 “ { ⟨ 𝑚 , 𝑒 ⟩ } ) = ( 𝑛 “ { ⟨ 𝑝 , 𝑒 ⟩ } ) ) ∧ ∀ 𝑦𝑢𝑒𝑥 ( ( 𝑚 “ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) ⊆ ( 𝑓 “ { 𝑦 } ) → ( 𝑛 “ { ⟨ 𝑚 , 𝑒 ⟩ } ) ⊆ ( 𝑓 “ { 𝑦 } ) ) ) ) )
142 141 9 8 wsbc [ ( mEx ‘ 𝑡 ) / 𝑥 ] [ ( mVL ‘ 𝑡 ) / 𝑣 ] [ ( mEval ‘ 𝑡 ) / 𝑛 ] [ ( mFresh ‘ 𝑡 ) / 𝑓 ] ( ( 𝑢 ⊆ ( ( mTC ‘ 𝑡 ) × V ) ∧ 𝑓 ∈ ( mFRel ‘ 𝑡 ) ∧ 𝑛 ∈ ( 𝑢pm ( 𝑣 × ( mEx ‘ 𝑡 ) ) ) ) ∧ ∀ 𝑚𝑣 ( ( ∀ 𝑒𝑥 ( 𝑛 “ { ⟨ 𝑚 , 𝑒 ⟩ } ) ⊆ ( 𝑢 “ { ( 1st𝑒 ) } ) ∧ ∀ 𝑦 ∈ ( mVR ‘ 𝑡 ) ⟨ 𝑚 , ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ⟩ 𝑛 ( 𝑚𝑦 ) ∧ ∀ 𝑑𝑎 ( ⟨ 𝑑 , , 𝑎 ⟩ ∈ ( mAx ‘ 𝑡 ) → ( ( ∀ 𝑦𝑧 ( 𝑦 𝑑 𝑧 → ( 𝑚𝑦 ) 𝑓 ( 𝑚𝑧 ) ) ∧ ⊆ ( dom 𝑛 “ { 𝑚 } ) ) → 𝑚 dom 𝑛 𝑎 ) ) ) ∧ ( ∀ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ∀ 𝑒 ∈ ( mEx ‘ 𝑡 ) ∀ 𝑦 ( ⟨ 𝑠 , 𝑚 ⟩ ( mVSubst ‘ 𝑡 ) 𝑦 → ( 𝑛 “ { ⟨ 𝑚 , ( 𝑠𝑒 ) ⟩ } ) = ( 𝑛 “ { ⟨ 𝑦 , 𝑒 ⟩ } ) ) ∧ ∀ 𝑝𝑣𝑒𝑥 ( ( 𝑚 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) = ( 𝑝 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) → ( 𝑛 “ { ⟨ 𝑚 , 𝑒 ⟩ } ) = ( 𝑛 “ { ⟨ 𝑝 , 𝑒 ⟩ } ) ) ∧ ∀ 𝑦𝑢𝑒𝑥 ( ( 𝑚 “ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) ⊆ ( 𝑓 “ { 𝑦 } ) → ( 𝑛 “ { ⟨ 𝑚 , 𝑒 ⟩ } ) ⊆ ( 𝑓 “ { 𝑦 } ) ) ) ) )
143 142 6 5 wsbc [ ( mUV ‘ 𝑡 ) / 𝑢 ] [ ( mEx ‘ 𝑡 ) / 𝑥 ] [ ( mVL ‘ 𝑡 ) / 𝑣 ] [ ( mEval ‘ 𝑡 ) / 𝑛 ] [ ( mFresh ‘ 𝑡 ) / 𝑓 ] ( ( 𝑢 ⊆ ( ( mTC ‘ 𝑡 ) × V ) ∧ 𝑓 ∈ ( mFRel ‘ 𝑡 ) ∧ 𝑛 ∈ ( 𝑢pm ( 𝑣 × ( mEx ‘ 𝑡 ) ) ) ) ∧ ∀ 𝑚𝑣 ( ( ∀ 𝑒𝑥 ( 𝑛 “ { ⟨ 𝑚 , 𝑒 ⟩ } ) ⊆ ( 𝑢 “ { ( 1st𝑒 ) } ) ∧ ∀ 𝑦 ∈ ( mVR ‘ 𝑡 ) ⟨ 𝑚 , ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ⟩ 𝑛 ( 𝑚𝑦 ) ∧ ∀ 𝑑𝑎 ( ⟨ 𝑑 , , 𝑎 ⟩ ∈ ( mAx ‘ 𝑡 ) → ( ( ∀ 𝑦𝑧 ( 𝑦 𝑑 𝑧 → ( 𝑚𝑦 ) 𝑓 ( 𝑚𝑧 ) ) ∧ ⊆ ( dom 𝑛 “ { 𝑚 } ) ) → 𝑚 dom 𝑛 𝑎 ) ) ) ∧ ( ∀ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ∀ 𝑒 ∈ ( mEx ‘ 𝑡 ) ∀ 𝑦 ( ⟨ 𝑠 , 𝑚 ⟩ ( mVSubst ‘ 𝑡 ) 𝑦 → ( 𝑛 “ { ⟨ 𝑚 , ( 𝑠𝑒 ) ⟩ } ) = ( 𝑛 “ { ⟨ 𝑦 , 𝑒 ⟩ } ) ) ∧ ∀ 𝑝𝑣𝑒𝑥 ( ( 𝑚 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) = ( 𝑝 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) → ( 𝑛 “ { ⟨ 𝑚 , 𝑒 ⟩ } ) = ( 𝑛 “ { ⟨ 𝑝 , 𝑒 ⟩ } ) ) ∧ ∀ 𝑦𝑢𝑒𝑥 ( ( 𝑚 “ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) ⊆ ( 𝑓 “ { 𝑦 } ) → ( 𝑛 “ { ⟨ 𝑚 , 𝑒 ⟩ } ) ⊆ ( 𝑓 “ { 𝑦 } ) ) ) ) )
144 143 1 2 crab { 𝑡 ∈ mFS ∣ [ ( mUV ‘ 𝑡 ) / 𝑢 ] [ ( mEx ‘ 𝑡 ) / 𝑥 ] [ ( mVL ‘ 𝑡 ) / 𝑣 ] [ ( mEval ‘ 𝑡 ) / 𝑛 ] [ ( mFresh ‘ 𝑡 ) / 𝑓 ] ( ( 𝑢 ⊆ ( ( mTC ‘ 𝑡 ) × V ) ∧ 𝑓 ∈ ( mFRel ‘ 𝑡 ) ∧ 𝑛 ∈ ( 𝑢pm ( 𝑣 × ( mEx ‘ 𝑡 ) ) ) ) ∧ ∀ 𝑚𝑣 ( ( ∀ 𝑒𝑥 ( 𝑛 “ { ⟨ 𝑚 , 𝑒 ⟩ } ) ⊆ ( 𝑢 “ { ( 1st𝑒 ) } ) ∧ ∀ 𝑦 ∈ ( mVR ‘ 𝑡 ) ⟨ 𝑚 , ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ⟩ 𝑛 ( 𝑚𝑦 ) ∧ ∀ 𝑑𝑎 ( ⟨ 𝑑 , , 𝑎 ⟩ ∈ ( mAx ‘ 𝑡 ) → ( ( ∀ 𝑦𝑧 ( 𝑦 𝑑 𝑧 → ( 𝑚𝑦 ) 𝑓 ( 𝑚𝑧 ) ) ∧ ⊆ ( dom 𝑛 “ { 𝑚 } ) ) → 𝑚 dom 𝑛 𝑎 ) ) ) ∧ ( ∀ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ∀ 𝑒 ∈ ( mEx ‘ 𝑡 ) ∀ 𝑦 ( ⟨ 𝑠 , 𝑚 ⟩ ( mVSubst ‘ 𝑡 ) 𝑦 → ( 𝑛 “ { ⟨ 𝑚 , ( 𝑠𝑒 ) ⟩ } ) = ( 𝑛 “ { ⟨ 𝑦 , 𝑒 ⟩ } ) ) ∧ ∀ 𝑝𝑣𝑒𝑥 ( ( 𝑚 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) = ( 𝑝 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) → ( 𝑛 “ { ⟨ 𝑚 , 𝑒 ⟩ } ) = ( 𝑛 “ { ⟨ 𝑝 , 𝑒 ⟩ } ) ) ∧ ∀ 𝑦𝑢𝑒𝑥 ( ( 𝑚 “ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) ⊆ ( 𝑓 “ { 𝑦 } ) → ( 𝑛 “ { ⟨ 𝑚 , 𝑒 ⟩ } ) ⊆ ( 𝑓 “ { 𝑦 } ) ) ) ) ) }
145 0 144 wceq mMdl = { 𝑡 ∈ mFS ∣ [ ( mUV ‘ 𝑡 ) / 𝑢 ] [ ( mEx ‘ 𝑡 ) / 𝑥 ] [ ( mVL ‘ 𝑡 ) / 𝑣 ] [ ( mEval ‘ 𝑡 ) / 𝑛 ] [ ( mFresh ‘ 𝑡 ) / 𝑓 ] ( ( 𝑢 ⊆ ( ( mTC ‘ 𝑡 ) × V ) ∧ 𝑓 ∈ ( mFRel ‘ 𝑡 ) ∧ 𝑛 ∈ ( 𝑢pm ( 𝑣 × ( mEx ‘ 𝑡 ) ) ) ) ∧ ∀ 𝑚𝑣 ( ( ∀ 𝑒𝑥 ( 𝑛 “ { ⟨ 𝑚 , 𝑒 ⟩ } ) ⊆ ( 𝑢 “ { ( 1st𝑒 ) } ) ∧ ∀ 𝑦 ∈ ( mVR ‘ 𝑡 ) ⟨ 𝑚 , ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ⟩ 𝑛 ( 𝑚𝑦 ) ∧ ∀ 𝑑𝑎 ( ⟨ 𝑑 , , 𝑎 ⟩ ∈ ( mAx ‘ 𝑡 ) → ( ( ∀ 𝑦𝑧 ( 𝑦 𝑑 𝑧 → ( 𝑚𝑦 ) 𝑓 ( 𝑚𝑧 ) ) ∧ ⊆ ( dom 𝑛 “ { 𝑚 } ) ) → 𝑚 dom 𝑛 𝑎 ) ) ) ∧ ( ∀ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ∀ 𝑒 ∈ ( mEx ‘ 𝑡 ) ∀ 𝑦 ( ⟨ 𝑠 , 𝑚 ⟩ ( mVSubst ‘ 𝑡 ) 𝑦 → ( 𝑛 “ { ⟨ 𝑚 , ( 𝑠𝑒 ) ⟩ } ) = ( 𝑛 “ { ⟨ 𝑦 , 𝑒 ⟩ } ) ) ∧ ∀ 𝑝𝑣𝑒𝑥 ( ( 𝑚 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) = ( 𝑝 ↾ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) → ( 𝑛 “ { ⟨ 𝑚 , 𝑒 ⟩ } ) = ( 𝑛 “ { ⟨ 𝑝 , 𝑒 ⟩ } ) ) ∧ ∀ 𝑦𝑢𝑒𝑥 ( ( 𝑚 “ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) ) ⊆ ( 𝑓 “ { 𝑦 } ) → ( 𝑛 “ { ⟨ 𝑚 , 𝑒 ⟩ } ) ⊆ ( 𝑓 “ { 𝑦 } ) ) ) ) ) }