| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 0 | 
							
								
							 | 
							cmdl | 
							⊢ mMdl  | 
						
						
							| 1 | 
							
								
							 | 
							vt | 
							⊢ 𝑡  | 
						
						
							| 2 | 
							
								
							 | 
							cmfs | 
							⊢ mFS  | 
						
						
							| 3 | 
							
								
							 | 
							cmuv | 
							⊢ mUV  | 
						
						
							| 4 | 
							
								1
							 | 
							cv | 
							⊢ 𝑡  | 
						
						
							| 5 | 
							
								4 3
							 | 
							cfv | 
							⊢ ( mUV ‘ 𝑡 )  | 
						
						
							| 6 | 
							
								
							 | 
							vu | 
							⊢ 𝑢  | 
						
						
							| 7 | 
							
								
							 | 
							cmex | 
							⊢ mEx  | 
						
						
							| 8 | 
							
								4 7
							 | 
							cfv | 
							⊢ ( mEx ‘ 𝑡 )  | 
						
						
							| 9 | 
							
								
							 | 
							vx | 
							⊢ 𝑥  | 
						
						
							| 10 | 
							
								
							 | 
							cmvl | 
							⊢ mVL  | 
						
						
							| 11 | 
							
								4 10
							 | 
							cfv | 
							⊢ ( mVL ‘ 𝑡 )  | 
						
						
							| 12 | 
							
								
							 | 
							vv | 
							⊢ 𝑣  | 
						
						
							| 13 | 
							
								
							 | 
							cmevl | 
							⊢ mEval  | 
						
						
							| 14 | 
							
								4 13
							 | 
							cfv | 
							⊢ ( mEval ‘ 𝑡 )  | 
						
						
							| 15 | 
							
								
							 | 
							vn | 
							⊢ 𝑛  | 
						
						
							| 16 | 
							
								
							 | 
							cmfsh | 
							⊢ mFresh  | 
						
						
							| 17 | 
							
								4 16
							 | 
							cfv | 
							⊢ ( mFresh ‘ 𝑡 )  | 
						
						
							| 18 | 
							
								
							 | 
							vf | 
							⊢ 𝑓  | 
						
						
							| 19 | 
							
								6
							 | 
							cv | 
							⊢ 𝑢  | 
						
						
							| 20 | 
							
								
							 | 
							cmtc | 
							⊢ mTC  | 
						
						
							| 21 | 
							
								4 20
							 | 
							cfv | 
							⊢ ( mTC ‘ 𝑡 )  | 
						
						
							| 22 | 
							
								
							 | 
							cvv | 
							⊢ V  | 
						
						
							| 23 | 
							
								21 22
							 | 
							cxp | 
							⊢ ( ( mTC ‘ 𝑡 )  ×  V )  | 
						
						
							| 24 | 
							
								19 23
							 | 
							wss | 
							⊢ 𝑢  ⊆  ( ( mTC ‘ 𝑡 )  ×  V )  | 
						
						
							| 25 | 
							
								18
							 | 
							cv | 
							⊢ 𝑓  | 
						
						
							| 26 | 
							
								
							 | 
							cmfr | 
							⊢ mFRel  | 
						
						
							| 27 | 
							
								4 26
							 | 
							cfv | 
							⊢ ( mFRel ‘ 𝑡 )  | 
						
						
							| 28 | 
							
								25 27
							 | 
							wcel | 
							⊢ 𝑓  ∈  ( mFRel ‘ 𝑡 )  | 
						
						
							| 29 | 
							
								15
							 | 
							cv | 
							⊢ 𝑛  | 
						
						
							| 30 | 
							
								
							 | 
							cpm | 
							⊢  ↑pm   | 
						
						
							| 31 | 
							
								12
							 | 
							cv | 
							⊢ 𝑣  | 
						
						
							| 32 | 
							
								31 8
							 | 
							cxp | 
							⊢ ( 𝑣  ×  ( mEx ‘ 𝑡 ) )  | 
						
						
							| 33 | 
							
								19 32 30
							 | 
							co | 
							⊢ ( 𝑢  ↑pm  ( 𝑣  ×  ( mEx ‘ 𝑡 ) ) )  | 
						
						
							| 34 | 
							
								29 33
							 | 
							wcel | 
							⊢ 𝑛  ∈  ( 𝑢  ↑pm  ( 𝑣  ×  ( mEx ‘ 𝑡 ) ) )  | 
						
						
							| 35 | 
							
								24 28 34
							 | 
							w3a | 
							⊢ ( 𝑢  ⊆  ( ( mTC ‘ 𝑡 )  ×  V )  ∧  𝑓  ∈  ( mFRel ‘ 𝑡 )  ∧  𝑛  ∈  ( 𝑢  ↑pm  ( 𝑣  ×  ( mEx ‘ 𝑡 ) ) ) )  | 
						
						
							| 36 | 
							
								
							 | 
							vm | 
							⊢ 𝑚  | 
						
						
							| 37 | 
							
								
							 | 
							ve | 
							⊢ 𝑒  | 
						
						
							| 38 | 
							
								9
							 | 
							cv | 
							⊢ 𝑥  | 
						
						
							| 39 | 
							
								36
							 | 
							cv | 
							⊢ 𝑚  | 
						
						
							| 40 | 
							
								37
							 | 
							cv | 
							⊢ 𝑒  | 
						
						
							| 41 | 
							
								39 40
							 | 
							cop | 
							⊢ 〈 𝑚 ,  𝑒 〉  | 
						
						
							| 42 | 
							
								41
							 | 
							csn | 
							⊢ { 〈 𝑚 ,  𝑒 〉 }  | 
						
						
							| 43 | 
							
								29 42
							 | 
							cima | 
							⊢ ( 𝑛  “  { 〈 𝑚 ,  𝑒 〉 } )  | 
						
						
							| 44 | 
							
								
							 | 
							c1st | 
							⊢ 1st   | 
						
						
							| 45 | 
							
								40 44
							 | 
							cfv | 
							⊢ ( 1st  ‘ 𝑒 )  | 
						
						
							| 46 | 
							
								45
							 | 
							csn | 
							⊢ { ( 1st  ‘ 𝑒 ) }  | 
						
						
							| 47 | 
							
								19 46
							 | 
							cima | 
							⊢ ( 𝑢  “  { ( 1st  ‘ 𝑒 ) } )  | 
						
						
							| 48 | 
							
								43 47
							 | 
							wss | 
							⊢ ( 𝑛  “  { 〈 𝑚 ,  𝑒 〉 } )  ⊆  ( 𝑢  “  { ( 1st  ‘ 𝑒 ) } )  | 
						
						
							| 49 | 
							
								48 37 38
							 | 
							wral | 
							⊢ ∀ 𝑒  ∈  𝑥 ( 𝑛  “  { 〈 𝑚 ,  𝑒 〉 } )  ⊆  ( 𝑢  “  { ( 1st  ‘ 𝑒 ) } )  | 
						
						
							| 50 | 
							
								
							 | 
							vy | 
							⊢ 𝑦  | 
						
						
							| 51 | 
							
								
							 | 
							cmvar | 
							⊢ mVR  | 
						
						
							| 52 | 
							
								4 51
							 | 
							cfv | 
							⊢ ( mVR ‘ 𝑡 )  | 
						
						
							| 53 | 
							
								
							 | 
							cmvh | 
							⊢ mVH  | 
						
						
							| 54 | 
							
								4 53
							 | 
							cfv | 
							⊢ ( mVH ‘ 𝑡 )  | 
						
						
							| 55 | 
							
								50
							 | 
							cv | 
							⊢ 𝑦  | 
						
						
							| 56 | 
							
								55 54
							 | 
							cfv | 
							⊢ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 )  | 
						
						
							| 57 | 
							
								39 56
							 | 
							cop | 
							⊢ 〈 𝑚 ,  ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) 〉  | 
						
						
							| 58 | 
							
								55 39
							 | 
							cfv | 
							⊢ ( 𝑚 ‘ 𝑦 )  | 
						
						
							| 59 | 
							
								57 58 29
							 | 
							wbr | 
							⊢ 〈 𝑚 ,  ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) 〉 𝑛 ( 𝑚 ‘ 𝑦 )  | 
						
						
							| 60 | 
							
								59 50 52
							 | 
							wral | 
							⊢ ∀ 𝑦  ∈  ( mVR ‘ 𝑡 ) 〈 𝑚 ,  ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) 〉 𝑛 ( 𝑚 ‘ 𝑦 )  | 
						
						
							| 61 | 
							
								
							 | 
							vd | 
							⊢ 𝑑  | 
						
						
							| 62 | 
							
								
							 | 
							vh | 
							⊢ ℎ  | 
						
						
							| 63 | 
							
								
							 | 
							va | 
							⊢ 𝑎  | 
						
						
							| 64 | 
							
								61
							 | 
							cv | 
							⊢ 𝑑  | 
						
						
							| 65 | 
							
								62
							 | 
							cv | 
							⊢ ℎ  | 
						
						
							| 66 | 
							
								63
							 | 
							cv | 
							⊢ 𝑎  | 
						
						
							| 67 | 
							
								64 65 66
							 | 
							cotp | 
							⊢ 〈 𝑑 ,  ℎ ,  𝑎 〉  | 
						
						
							| 68 | 
							
								
							 | 
							cmax | 
							⊢ mAx  | 
						
						
							| 69 | 
							
								4 68
							 | 
							cfv | 
							⊢ ( mAx ‘ 𝑡 )  | 
						
						
							| 70 | 
							
								67 69
							 | 
							wcel | 
							⊢ 〈 𝑑 ,  ℎ ,  𝑎 〉  ∈  ( mAx ‘ 𝑡 )  | 
						
						
							| 71 | 
							
								
							 | 
							vz | 
							⊢ 𝑧  | 
						
						
							| 72 | 
							
								71
							 | 
							cv | 
							⊢ 𝑧  | 
						
						
							| 73 | 
							
								55 72 64
							 | 
							wbr | 
							⊢ 𝑦 𝑑 𝑧  | 
						
						
							| 74 | 
							
								72 39
							 | 
							cfv | 
							⊢ ( 𝑚 ‘ 𝑧 )  | 
						
						
							| 75 | 
							
								58 74 25
							 | 
							wbr | 
							⊢ ( 𝑚 ‘ 𝑦 ) 𝑓 ( 𝑚 ‘ 𝑧 )  | 
						
						
							| 76 | 
							
								73 75
							 | 
							wi | 
							⊢ ( 𝑦 𝑑 𝑧  →  ( 𝑚 ‘ 𝑦 ) 𝑓 ( 𝑚 ‘ 𝑧 ) )  | 
						
						
							| 77 | 
							
								76 71
							 | 
							wal | 
							⊢ ∀ 𝑧 ( 𝑦 𝑑 𝑧  →  ( 𝑚 ‘ 𝑦 ) 𝑓 ( 𝑚 ‘ 𝑧 ) )  | 
						
						
							| 78 | 
							
								77 50
							 | 
							wal | 
							⊢ ∀ 𝑦 ∀ 𝑧 ( 𝑦 𝑑 𝑧  →  ( 𝑚 ‘ 𝑦 ) 𝑓 ( 𝑚 ‘ 𝑧 ) )  | 
						
						
							| 79 | 
							
								29
							 | 
							cdm | 
							⊢ dom  𝑛  | 
						
						
							| 80 | 
							
								39
							 | 
							csn | 
							⊢ { 𝑚 }  | 
						
						
							| 81 | 
							
								79 80
							 | 
							cima | 
							⊢ ( dom  𝑛  “  { 𝑚 } )  | 
						
						
							| 82 | 
							
								65 81
							 | 
							wss | 
							⊢ ℎ  ⊆  ( dom  𝑛  “  { 𝑚 } )  | 
						
						
							| 83 | 
							
								78 82
							 | 
							wa | 
							⊢ ( ∀ 𝑦 ∀ 𝑧 ( 𝑦 𝑑 𝑧  →  ( 𝑚 ‘ 𝑦 ) 𝑓 ( 𝑚 ‘ 𝑧 ) )  ∧  ℎ  ⊆  ( dom  𝑛  “  { 𝑚 } ) )  | 
						
						
							| 84 | 
							
								39 66 79
							 | 
							wbr | 
							⊢ 𝑚 dom  𝑛 𝑎  | 
						
						
							| 85 | 
							
								83 84
							 | 
							wi | 
							⊢ ( ( ∀ 𝑦 ∀ 𝑧 ( 𝑦 𝑑 𝑧  →  ( 𝑚 ‘ 𝑦 ) 𝑓 ( 𝑚 ‘ 𝑧 ) )  ∧  ℎ  ⊆  ( dom  𝑛  “  { 𝑚 } ) )  →  𝑚 dom  𝑛 𝑎 )  | 
						
						
							| 86 | 
							
								70 85
							 | 
							wi | 
							⊢ ( 〈 𝑑 ,  ℎ ,  𝑎 〉  ∈  ( mAx ‘ 𝑡 )  →  ( ( ∀ 𝑦 ∀ 𝑧 ( 𝑦 𝑑 𝑧  →  ( 𝑚 ‘ 𝑦 ) 𝑓 ( 𝑚 ‘ 𝑧 ) )  ∧  ℎ  ⊆  ( dom  𝑛  “  { 𝑚 } ) )  →  𝑚 dom  𝑛 𝑎 ) )  | 
						
						
							| 87 | 
							
								86 63
							 | 
							wal | 
							⊢ ∀ 𝑎 ( 〈 𝑑 ,  ℎ ,  𝑎 〉  ∈  ( mAx ‘ 𝑡 )  →  ( ( ∀ 𝑦 ∀ 𝑧 ( 𝑦 𝑑 𝑧  →  ( 𝑚 ‘ 𝑦 ) 𝑓 ( 𝑚 ‘ 𝑧 ) )  ∧  ℎ  ⊆  ( dom  𝑛  “  { 𝑚 } ) )  →  𝑚 dom  𝑛 𝑎 ) )  | 
						
						
							| 88 | 
							
								87 62
							 | 
							wal | 
							⊢ ∀ ℎ ∀ 𝑎 ( 〈 𝑑 ,  ℎ ,  𝑎 〉  ∈  ( mAx ‘ 𝑡 )  →  ( ( ∀ 𝑦 ∀ 𝑧 ( 𝑦 𝑑 𝑧  →  ( 𝑚 ‘ 𝑦 ) 𝑓 ( 𝑚 ‘ 𝑧 ) )  ∧  ℎ  ⊆  ( dom  𝑛  “  { 𝑚 } ) )  →  𝑚 dom  𝑛 𝑎 ) )  | 
						
						
							| 89 | 
							
								88 61
							 | 
							wal | 
							⊢ ∀ 𝑑 ∀ ℎ ∀ 𝑎 ( 〈 𝑑 ,  ℎ ,  𝑎 〉  ∈  ( mAx ‘ 𝑡 )  →  ( ( ∀ 𝑦 ∀ 𝑧 ( 𝑦 𝑑 𝑧  →  ( 𝑚 ‘ 𝑦 ) 𝑓 ( 𝑚 ‘ 𝑧 ) )  ∧  ℎ  ⊆  ( dom  𝑛  “  { 𝑚 } ) )  →  𝑚 dom  𝑛 𝑎 ) )  | 
						
						
							| 90 | 
							
								49 60 89
							 | 
							w3a | 
							⊢ ( ∀ 𝑒  ∈  𝑥 ( 𝑛  “  { 〈 𝑚 ,  𝑒 〉 } )  ⊆  ( 𝑢  “  { ( 1st  ‘ 𝑒 ) } )  ∧  ∀ 𝑦  ∈  ( mVR ‘ 𝑡 ) 〈 𝑚 ,  ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) 〉 𝑛 ( 𝑚 ‘ 𝑦 )  ∧  ∀ 𝑑 ∀ ℎ ∀ 𝑎 ( 〈 𝑑 ,  ℎ ,  𝑎 〉  ∈  ( mAx ‘ 𝑡 )  →  ( ( ∀ 𝑦 ∀ 𝑧 ( 𝑦 𝑑 𝑧  →  ( 𝑚 ‘ 𝑦 ) 𝑓 ( 𝑚 ‘ 𝑧 ) )  ∧  ℎ  ⊆  ( dom  𝑛  “  { 𝑚 } ) )  →  𝑚 dom  𝑛 𝑎 ) ) )  | 
						
						
							| 91 | 
							
								
							 | 
							vs | 
							⊢ 𝑠  | 
						
						
							| 92 | 
							
								
							 | 
							cmsub | 
							⊢ mSubst  | 
						
						
							| 93 | 
							
								4 92
							 | 
							cfv | 
							⊢ ( mSubst ‘ 𝑡 )  | 
						
						
							| 94 | 
							
								93
							 | 
							crn | 
							⊢ ran  ( mSubst ‘ 𝑡 )  | 
						
						
							| 95 | 
							
								91
							 | 
							cv | 
							⊢ 𝑠  | 
						
						
							| 96 | 
							
								95 39
							 | 
							cop | 
							⊢ 〈 𝑠 ,  𝑚 〉  | 
						
						
							| 97 | 
							
								
							 | 
							cmvsb | 
							⊢ mVSubst  | 
						
						
							| 98 | 
							
								4 97
							 | 
							cfv | 
							⊢ ( mVSubst ‘ 𝑡 )  | 
						
						
							| 99 | 
							
								96 55 98
							 | 
							wbr | 
							⊢ 〈 𝑠 ,  𝑚 〉 ( mVSubst ‘ 𝑡 ) 𝑦  | 
						
						
							| 100 | 
							
								40 95
							 | 
							cfv | 
							⊢ ( 𝑠 ‘ 𝑒 )  | 
						
						
							| 101 | 
							
								39 100
							 | 
							cop | 
							⊢ 〈 𝑚 ,  ( 𝑠 ‘ 𝑒 ) 〉  | 
						
						
							| 102 | 
							
								101
							 | 
							csn | 
							⊢ { 〈 𝑚 ,  ( 𝑠 ‘ 𝑒 ) 〉 }  | 
						
						
							| 103 | 
							
								29 102
							 | 
							cima | 
							⊢ ( 𝑛  “  { 〈 𝑚 ,  ( 𝑠 ‘ 𝑒 ) 〉 } )  | 
						
						
							| 104 | 
							
								55 40
							 | 
							cop | 
							⊢ 〈 𝑦 ,  𝑒 〉  | 
						
						
							| 105 | 
							
								104
							 | 
							csn | 
							⊢ { 〈 𝑦 ,  𝑒 〉 }  | 
						
						
							| 106 | 
							
								29 105
							 | 
							cima | 
							⊢ ( 𝑛  “  { 〈 𝑦 ,  𝑒 〉 } )  | 
						
						
							| 107 | 
							
								103 106
							 | 
							wceq | 
							⊢ ( 𝑛  “  { 〈 𝑚 ,  ( 𝑠 ‘ 𝑒 ) 〉 } )  =  ( 𝑛  “  { 〈 𝑦 ,  𝑒 〉 } )  | 
						
						
							| 108 | 
							
								99 107
							 | 
							wi | 
							⊢ ( 〈 𝑠 ,  𝑚 〉 ( mVSubst ‘ 𝑡 ) 𝑦  →  ( 𝑛  “  { 〈 𝑚 ,  ( 𝑠 ‘ 𝑒 ) 〉 } )  =  ( 𝑛  “  { 〈 𝑦 ,  𝑒 〉 } ) )  | 
						
						
							| 109 | 
							
								108 50
							 | 
							wal | 
							⊢ ∀ 𝑦 ( 〈 𝑠 ,  𝑚 〉 ( mVSubst ‘ 𝑡 ) 𝑦  →  ( 𝑛  “  { 〈 𝑚 ,  ( 𝑠 ‘ 𝑒 ) 〉 } )  =  ( 𝑛  “  { 〈 𝑦 ,  𝑒 〉 } ) )  | 
						
						
							| 110 | 
							
								109 37 8
							 | 
							wral | 
							⊢ ∀ 𝑒  ∈  ( mEx ‘ 𝑡 ) ∀ 𝑦 ( 〈 𝑠 ,  𝑚 〉 ( mVSubst ‘ 𝑡 ) 𝑦  →  ( 𝑛  “  { 〈 𝑚 ,  ( 𝑠 ‘ 𝑒 ) 〉 } )  =  ( 𝑛  “  { 〈 𝑦 ,  𝑒 〉 } ) )  | 
						
						
							| 111 | 
							
								110 91 94
							 | 
							wral | 
							⊢ ∀ 𝑠  ∈  ran  ( mSubst ‘ 𝑡 ) ∀ 𝑒  ∈  ( mEx ‘ 𝑡 ) ∀ 𝑦 ( 〈 𝑠 ,  𝑚 〉 ( mVSubst ‘ 𝑡 ) 𝑦  →  ( 𝑛  “  { 〈 𝑚 ,  ( 𝑠 ‘ 𝑒 ) 〉 } )  =  ( 𝑛  “  { 〈 𝑦 ,  𝑒 〉 } ) )  | 
						
						
							| 112 | 
							
								
							 | 
							vp | 
							⊢ 𝑝  | 
						
						
							| 113 | 
							
								
							 | 
							cmvrs | 
							⊢ mVars  | 
						
						
							| 114 | 
							
								4 113
							 | 
							cfv | 
							⊢ ( mVars ‘ 𝑡 )  | 
						
						
							| 115 | 
							
								40 114
							 | 
							cfv | 
							⊢ ( ( mVars ‘ 𝑡 ) ‘ 𝑒 )  | 
						
						
							| 116 | 
							
								39 115
							 | 
							cres | 
							⊢ ( 𝑚  ↾  ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) )  | 
						
						
							| 117 | 
							
								112
							 | 
							cv | 
							⊢ 𝑝  | 
						
						
							| 118 | 
							
								117 115
							 | 
							cres | 
							⊢ ( 𝑝  ↾  ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) )  | 
						
						
							| 119 | 
							
								116 118
							 | 
							wceq | 
							⊢ ( 𝑚  ↾  ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) )  =  ( 𝑝  ↾  ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) )  | 
						
						
							| 120 | 
							
								117 40
							 | 
							cop | 
							⊢ 〈 𝑝 ,  𝑒 〉  | 
						
						
							| 121 | 
							
								120
							 | 
							csn | 
							⊢ { 〈 𝑝 ,  𝑒 〉 }  | 
						
						
							| 122 | 
							
								29 121
							 | 
							cima | 
							⊢ ( 𝑛  “  { 〈 𝑝 ,  𝑒 〉 } )  | 
						
						
							| 123 | 
							
								43 122
							 | 
							wceq | 
							⊢ ( 𝑛  “  { 〈 𝑚 ,  𝑒 〉 } )  =  ( 𝑛  “  { 〈 𝑝 ,  𝑒 〉 } )  | 
						
						
							| 124 | 
							
								119 123
							 | 
							wi | 
							⊢ ( ( 𝑚  ↾  ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) )  =  ( 𝑝  ↾  ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) )  →  ( 𝑛  “  { 〈 𝑚 ,  𝑒 〉 } )  =  ( 𝑛  “  { 〈 𝑝 ,  𝑒 〉 } ) )  | 
						
						
							| 125 | 
							
								124 37 38
							 | 
							wral | 
							⊢ ∀ 𝑒  ∈  𝑥 ( ( 𝑚  ↾  ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) )  =  ( 𝑝  ↾  ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) )  →  ( 𝑛  “  { 〈 𝑚 ,  𝑒 〉 } )  =  ( 𝑛  “  { 〈 𝑝 ,  𝑒 〉 } ) )  | 
						
						
							| 126 | 
							
								125 112 31
							 | 
							wral | 
							⊢ ∀ 𝑝  ∈  𝑣 ∀ 𝑒  ∈  𝑥 ( ( 𝑚  ↾  ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) )  =  ( 𝑝  ↾  ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) )  →  ( 𝑛  “  { 〈 𝑚 ,  𝑒 〉 } )  =  ( 𝑛  “  { 〈 𝑝 ,  𝑒 〉 } ) )  | 
						
						
							| 127 | 
							
								39 115
							 | 
							cima | 
							⊢ ( 𝑚  “  ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) )  | 
						
						
							| 128 | 
							
								55
							 | 
							csn | 
							⊢ { 𝑦 }  | 
						
						
							| 129 | 
							
								25 128
							 | 
							cima | 
							⊢ ( 𝑓  “  { 𝑦 } )  | 
						
						
							| 130 | 
							
								127 129
							 | 
							wss | 
							⊢ ( 𝑚  “  ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) )  ⊆  ( 𝑓  “  { 𝑦 } )  | 
						
						
							| 131 | 
							
								43 129
							 | 
							wss | 
							⊢ ( 𝑛  “  { 〈 𝑚 ,  𝑒 〉 } )  ⊆  ( 𝑓  “  { 𝑦 } )  | 
						
						
							| 132 | 
							
								130 131
							 | 
							wi | 
							⊢ ( ( 𝑚  “  ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) )  ⊆  ( 𝑓  “  { 𝑦 } )  →  ( 𝑛  “  { 〈 𝑚 ,  𝑒 〉 } )  ⊆  ( 𝑓  “  { 𝑦 } ) )  | 
						
						
							| 133 | 
							
								132 37 38
							 | 
							wral | 
							⊢ ∀ 𝑒  ∈  𝑥 ( ( 𝑚  “  ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) )  ⊆  ( 𝑓  “  { 𝑦 } )  →  ( 𝑛  “  { 〈 𝑚 ,  𝑒 〉 } )  ⊆  ( 𝑓  “  { 𝑦 } ) )  | 
						
						
							| 134 | 
							
								133 50 19
							 | 
							wral | 
							⊢ ∀ 𝑦  ∈  𝑢 ∀ 𝑒  ∈  𝑥 ( ( 𝑚  “  ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) )  ⊆  ( 𝑓  “  { 𝑦 } )  →  ( 𝑛  “  { 〈 𝑚 ,  𝑒 〉 } )  ⊆  ( 𝑓  “  { 𝑦 } ) )  | 
						
						
							| 135 | 
							
								111 126 134
							 | 
							w3a | 
							⊢ ( ∀ 𝑠  ∈  ran  ( mSubst ‘ 𝑡 ) ∀ 𝑒  ∈  ( mEx ‘ 𝑡 ) ∀ 𝑦 ( 〈 𝑠 ,  𝑚 〉 ( mVSubst ‘ 𝑡 ) 𝑦  →  ( 𝑛  “  { 〈 𝑚 ,  ( 𝑠 ‘ 𝑒 ) 〉 } )  =  ( 𝑛  “  { 〈 𝑦 ,  𝑒 〉 } ) )  ∧  ∀ 𝑝  ∈  𝑣 ∀ 𝑒  ∈  𝑥 ( ( 𝑚  ↾  ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) )  =  ( 𝑝  ↾  ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) )  →  ( 𝑛  “  { 〈 𝑚 ,  𝑒 〉 } )  =  ( 𝑛  “  { 〈 𝑝 ,  𝑒 〉 } ) )  ∧  ∀ 𝑦  ∈  𝑢 ∀ 𝑒  ∈  𝑥 ( ( 𝑚  “  ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) )  ⊆  ( 𝑓  “  { 𝑦 } )  →  ( 𝑛  “  { 〈 𝑚 ,  𝑒 〉 } )  ⊆  ( 𝑓  “  { 𝑦 } ) ) )  | 
						
						
							| 136 | 
							
								90 135
							 | 
							wa | 
							⊢ ( ( ∀ 𝑒  ∈  𝑥 ( 𝑛  “  { 〈 𝑚 ,  𝑒 〉 } )  ⊆  ( 𝑢  “  { ( 1st  ‘ 𝑒 ) } )  ∧  ∀ 𝑦  ∈  ( mVR ‘ 𝑡 ) 〈 𝑚 ,  ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) 〉 𝑛 ( 𝑚 ‘ 𝑦 )  ∧  ∀ 𝑑 ∀ ℎ ∀ 𝑎 ( 〈 𝑑 ,  ℎ ,  𝑎 〉  ∈  ( mAx ‘ 𝑡 )  →  ( ( ∀ 𝑦 ∀ 𝑧 ( 𝑦 𝑑 𝑧  →  ( 𝑚 ‘ 𝑦 ) 𝑓 ( 𝑚 ‘ 𝑧 ) )  ∧  ℎ  ⊆  ( dom  𝑛  “  { 𝑚 } ) )  →  𝑚 dom  𝑛 𝑎 ) ) )  ∧  ( ∀ 𝑠  ∈  ran  ( mSubst ‘ 𝑡 ) ∀ 𝑒  ∈  ( mEx ‘ 𝑡 ) ∀ 𝑦 ( 〈 𝑠 ,  𝑚 〉 ( mVSubst ‘ 𝑡 ) 𝑦  →  ( 𝑛  “  { 〈 𝑚 ,  ( 𝑠 ‘ 𝑒 ) 〉 } )  =  ( 𝑛  “  { 〈 𝑦 ,  𝑒 〉 } ) )  ∧  ∀ 𝑝  ∈  𝑣 ∀ 𝑒  ∈  𝑥 ( ( 𝑚  ↾  ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) )  =  ( 𝑝  ↾  ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) )  →  ( 𝑛  “  { 〈 𝑚 ,  𝑒 〉 } )  =  ( 𝑛  “  { 〈 𝑝 ,  𝑒 〉 } ) )  ∧  ∀ 𝑦  ∈  𝑢 ∀ 𝑒  ∈  𝑥 ( ( 𝑚  “  ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) )  ⊆  ( 𝑓  “  { 𝑦 } )  →  ( 𝑛  “  { 〈 𝑚 ,  𝑒 〉 } )  ⊆  ( 𝑓  “  { 𝑦 } ) ) ) )  | 
						
						
							| 137 | 
							
								136 36 31
							 | 
							wral | 
							⊢ ∀ 𝑚  ∈  𝑣 ( ( ∀ 𝑒  ∈  𝑥 ( 𝑛  “  { 〈 𝑚 ,  𝑒 〉 } )  ⊆  ( 𝑢  “  { ( 1st  ‘ 𝑒 ) } )  ∧  ∀ 𝑦  ∈  ( mVR ‘ 𝑡 ) 〈 𝑚 ,  ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) 〉 𝑛 ( 𝑚 ‘ 𝑦 )  ∧  ∀ 𝑑 ∀ ℎ ∀ 𝑎 ( 〈 𝑑 ,  ℎ ,  𝑎 〉  ∈  ( mAx ‘ 𝑡 )  →  ( ( ∀ 𝑦 ∀ 𝑧 ( 𝑦 𝑑 𝑧  →  ( 𝑚 ‘ 𝑦 ) 𝑓 ( 𝑚 ‘ 𝑧 ) )  ∧  ℎ  ⊆  ( dom  𝑛  “  { 𝑚 } ) )  →  𝑚 dom  𝑛 𝑎 ) ) )  ∧  ( ∀ 𝑠  ∈  ran  ( mSubst ‘ 𝑡 ) ∀ 𝑒  ∈  ( mEx ‘ 𝑡 ) ∀ 𝑦 ( 〈 𝑠 ,  𝑚 〉 ( mVSubst ‘ 𝑡 ) 𝑦  →  ( 𝑛  “  { 〈 𝑚 ,  ( 𝑠 ‘ 𝑒 ) 〉 } )  =  ( 𝑛  “  { 〈 𝑦 ,  𝑒 〉 } ) )  ∧  ∀ 𝑝  ∈  𝑣 ∀ 𝑒  ∈  𝑥 ( ( 𝑚  ↾  ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) )  =  ( 𝑝  ↾  ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) )  →  ( 𝑛  “  { 〈 𝑚 ,  𝑒 〉 } )  =  ( 𝑛  “  { 〈 𝑝 ,  𝑒 〉 } ) )  ∧  ∀ 𝑦  ∈  𝑢 ∀ 𝑒  ∈  𝑥 ( ( 𝑚  “  ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) )  ⊆  ( 𝑓  “  { 𝑦 } )  →  ( 𝑛  “  { 〈 𝑚 ,  𝑒 〉 } )  ⊆  ( 𝑓  “  { 𝑦 } ) ) ) )  | 
						
						
							| 138 | 
							
								35 137
							 | 
							wa | 
							⊢ ( ( 𝑢  ⊆  ( ( mTC ‘ 𝑡 )  ×  V )  ∧  𝑓  ∈  ( mFRel ‘ 𝑡 )  ∧  𝑛  ∈  ( 𝑢  ↑pm  ( 𝑣  ×  ( mEx ‘ 𝑡 ) ) ) )  ∧  ∀ 𝑚  ∈  𝑣 ( ( ∀ 𝑒  ∈  𝑥 ( 𝑛  “  { 〈 𝑚 ,  𝑒 〉 } )  ⊆  ( 𝑢  “  { ( 1st  ‘ 𝑒 ) } )  ∧  ∀ 𝑦  ∈  ( mVR ‘ 𝑡 ) 〈 𝑚 ,  ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) 〉 𝑛 ( 𝑚 ‘ 𝑦 )  ∧  ∀ 𝑑 ∀ ℎ ∀ 𝑎 ( 〈 𝑑 ,  ℎ ,  𝑎 〉  ∈  ( mAx ‘ 𝑡 )  →  ( ( ∀ 𝑦 ∀ 𝑧 ( 𝑦 𝑑 𝑧  →  ( 𝑚 ‘ 𝑦 ) 𝑓 ( 𝑚 ‘ 𝑧 ) )  ∧  ℎ  ⊆  ( dom  𝑛  “  { 𝑚 } ) )  →  𝑚 dom  𝑛 𝑎 ) ) )  ∧  ( ∀ 𝑠  ∈  ran  ( mSubst ‘ 𝑡 ) ∀ 𝑒  ∈  ( mEx ‘ 𝑡 ) ∀ 𝑦 ( 〈 𝑠 ,  𝑚 〉 ( mVSubst ‘ 𝑡 ) 𝑦  →  ( 𝑛  “  { 〈 𝑚 ,  ( 𝑠 ‘ 𝑒 ) 〉 } )  =  ( 𝑛  “  { 〈 𝑦 ,  𝑒 〉 } ) )  ∧  ∀ 𝑝  ∈  𝑣 ∀ 𝑒  ∈  𝑥 ( ( 𝑚  ↾  ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) )  =  ( 𝑝  ↾  ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) )  →  ( 𝑛  “  { 〈 𝑚 ,  𝑒 〉 } )  =  ( 𝑛  “  { 〈 𝑝 ,  𝑒 〉 } ) )  ∧  ∀ 𝑦  ∈  𝑢 ∀ 𝑒  ∈  𝑥 ( ( 𝑚  “  ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) )  ⊆  ( 𝑓  “  { 𝑦 } )  →  ( 𝑛  “  { 〈 𝑚 ,  𝑒 〉 } )  ⊆  ( 𝑓  “  { 𝑦 } ) ) ) ) )  | 
						
						
							| 139 | 
							
								138 18 17
							 | 
							wsbc | 
							⊢ [ ( mFresh ‘ 𝑡 )  /  𝑓 ] ( ( 𝑢  ⊆  ( ( mTC ‘ 𝑡 )  ×  V )  ∧  𝑓  ∈  ( mFRel ‘ 𝑡 )  ∧  𝑛  ∈  ( 𝑢  ↑pm  ( 𝑣  ×  ( mEx ‘ 𝑡 ) ) ) )  ∧  ∀ 𝑚  ∈  𝑣 ( ( ∀ 𝑒  ∈  𝑥 ( 𝑛  “  { 〈 𝑚 ,  𝑒 〉 } )  ⊆  ( 𝑢  “  { ( 1st  ‘ 𝑒 ) } )  ∧  ∀ 𝑦  ∈  ( mVR ‘ 𝑡 ) 〈 𝑚 ,  ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) 〉 𝑛 ( 𝑚 ‘ 𝑦 )  ∧  ∀ 𝑑 ∀ ℎ ∀ 𝑎 ( 〈 𝑑 ,  ℎ ,  𝑎 〉  ∈  ( mAx ‘ 𝑡 )  →  ( ( ∀ 𝑦 ∀ 𝑧 ( 𝑦 𝑑 𝑧  →  ( 𝑚 ‘ 𝑦 ) 𝑓 ( 𝑚 ‘ 𝑧 ) )  ∧  ℎ  ⊆  ( dom  𝑛  “  { 𝑚 } ) )  →  𝑚 dom  𝑛 𝑎 ) ) )  ∧  ( ∀ 𝑠  ∈  ran  ( mSubst ‘ 𝑡 ) ∀ 𝑒  ∈  ( mEx ‘ 𝑡 ) ∀ 𝑦 ( 〈 𝑠 ,  𝑚 〉 ( mVSubst ‘ 𝑡 ) 𝑦  →  ( 𝑛  “  { 〈 𝑚 ,  ( 𝑠 ‘ 𝑒 ) 〉 } )  =  ( 𝑛  “  { 〈 𝑦 ,  𝑒 〉 } ) )  ∧  ∀ 𝑝  ∈  𝑣 ∀ 𝑒  ∈  𝑥 ( ( 𝑚  ↾  ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) )  =  ( 𝑝  ↾  ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) )  →  ( 𝑛  “  { 〈 𝑚 ,  𝑒 〉 } )  =  ( 𝑛  “  { 〈 𝑝 ,  𝑒 〉 } ) )  ∧  ∀ 𝑦  ∈  𝑢 ∀ 𝑒  ∈  𝑥 ( ( 𝑚  “  ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) )  ⊆  ( 𝑓  “  { 𝑦 } )  →  ( 𝑛  “  { 〈 𝑚 ,  𝑒 〉 } )  ⊆  ( 𝑓  “  { 𝑦 } ) ) ) ) )  | 
						
						
							| 140 | 
							
								139 15 14
							 | 
							wsbc | 
							⊢ [ ( mEval ‘ 𝑡 )  /  𝑛 ] [ ( mFresh ‘ 𝑡 )  /  𝑓 ] ( ( 𝑢  ⊆  ( ( mTC ‘ 𝑡 )  ×  V )  ∧  𝑓  ∈  ( mFRel ‘ 𝑡 )  ∧  𝑛  ∈  ( 𝑢  ↑pm  ( 𝑣  ×  ( mEx ‘ 𝑡 ) ) ) )  ∧  ∀ 𝑚  ∈  𝑣 ( ( ∀ 𝑒  ∈  𝑥 ( 𝑛  “  { 〈 𝑚 ,  𝑒 〉 } )  ⊆  ( 𝑢  “  { ( 1st  ‘ 𝑒 ) } )  ∧  ∀ 𝑦  ∈  ( mVR ‘ 𝑡 ) 〈 𝑚 ,  ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) 〉 𝑛 ( 𝑚 ‘ 𝑦 )  ∧  ∀ 𝑑 ∀ ℎ ∀ 𝑎 ( 〈 𝑑 ,  ℎ ,  𝑎 〉  ∈  ( mAx ‘ 𝑡 )  →  ( ( ∀ 𝑦 ∀ 𝑧 ( 𝑦 𝑑 𝑧  →  ( 𝑚 ‘ 𝑦 ) 𝑓 ( 𝑚 ‘ 𝑧 ) )  ∧  ℎ  ⊆  ( dom  𝑛  “  { 𝑚 } ) )  →  𝑚 dom  𝑛 𝑎 ) ) )  ∧  ( ∀ 𝑠  ∈  ran  ( mSubst ‘ 𝑡 ) ∀ 𝑒  ∈  ( mEx ‘ 𝑡 ) ∀ 𝑦 ( 〈 𝑠 ,  𝑚 〉 ( mVSubst ‘ 𝑡 ) 𝑦  →  ( 𝑛  “  { 〈 𝑚 ,  ( 𝑠 ‘ 𝑒 ) 〉 } )  =  ( 𝑛  “  { 〈 𝑦 ,  𝑒 〉 } ) )  ∧  ∀ 𝑝  ∈  𝑣 ∀ 𝑒  ∈  𝑥 ( ( 𝑚  ↾  ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) )  =  ( 𝑝  ↾  ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) )  →  ( 𝑛  “  { 〈 𝑚 ,  𝑒 〉 } )  =  ( 𝑛  “  { 〈 𝑝 ,  𝑒 〉 } ) )  ∧  ∀ 𝑦  ∈  𝑢 ∀ 𝑒  ∈  𝑥 ( ( 𝑚  “  ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) )  ⊆  ( 𝑓  “  { 𝑦 } )  →  ( 𝑛  “  { 〈 𝑚 ,  𝑒 〉 } )  ⊆  ( 𝑓  “  { 𝑦 } ) ) ) ) )  | 
						
						
							| 141 | 
							
								140 12 11
							 | 
							wsbc | 
							⊢ [ ( mVL ‘ 𝑡 )  /  𝑣 ] [ ( mEval ‘ 𝑡 )  /  𝑛 ] [ ( mFresh ‘ 𝑡 )  /  𝑓 ] ( ( 𝑢  ⊆  ( ( mTC ‘ 𝑡 )  ×  V )  ∧  𝑓  ∈  ( mFRel ‘ 𝑡 )  ∧  𝑛  ∈  ( 𝑢  ↑pm  ( 𝑣  ×  ( mEx ‘ 𝑡 ) ) ) )  ∧  ∀ 𝑚  ∈  𝑣 ( ( ∀ 𝑒  ∈  𝑥 ( 𝑛  “  { 〈 𝑚 ,  𝑒 〉 } )  ⊆  ( 𝑢  “  { ( 1st  ‘ 𝑒 ) } )  ∧  ∀ 𝑦  ∈  ( mVR ‘ 𝑡 ) 〈 𝑚 ,  ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) 〉 𝑛 ( 𝑚 ‘ 𝑦 )  ∧  ∀ 𝑑 ∀ ℎ ∀ 𝑎 ( 〈 𝑑 ,  ℎ ,  𝑎 〉  ∈  ( mAx ‘ 𝑡 )  →  ( ( ∀ 𝑦 ∀ 𝑧 ( 𝑦 𝑑 𝑧  →  ( 𝑚 ‘ 𝑦 ) 𝑓 ( 𝑚 ‘ 𝑧 ) )  ∧  ℎ  ⊆  ( dom  𝑛  “  { 𝑚 } ) )  →  𝑚 dom  𝑛 𝑎 ) ) )  ∧  ( ∀ 𝑠  ∈  ran  ( mSubst ‘ 𝑡 ) ∀ 𝑒  ∈  ( mEx ‘ 𝑡 ) ∀ 𝑦 ( 〈 𝑠 ,  𝑚 〉 ( mVSubst ‘ 𝑡 ) 𝑦  →  ( 𝑛  “  { 〈 𝑚 ,  ( 𝑠 ‘ 𝑒 ) 〉 } )  =  ( 𝑛  “  { 〈 𝑦 ,  𝑒 〉 } ) )  ∧  ∀ 𝑝  ∈  𝑣 ∀ 𝑒  ∈  𝑥 ( ( 𝑚  ↾  ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) )  =  ( 𝑝  ↾  ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) )  →  ( 𝑛  “  { 〈 𝑚 ,  𝑒 〉 } )  =  ( 𝑛  “  { 〈 𝑝 ,  𝑒 〉 } ) )  ∧  ∀ 𝑦  ∈  𝑢 ∀ 𝑒  ∈  𝑥 ( ( 𝑚  “  ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) )  ⊆  ( 𝑓  “  { 𝑦 } )  →  ( 𝑛  “  { 〈 𝑚 ,  𝑒 〉 } )  ⊆  ( 𝑓  “  { 𝑦 } ) ) ) ) )  | 
						
						
							| 142 | 
							
								141 9 8
							 | 
							wsbc | 
							⊢ [ ( mEx ‘ 𝑡 )  /  𝑥 ] [ ( mVL ‘ 𝑡 )  /  𝑣 ] [ ( mEval ‘ 𝑡 )  /  𝑛 ] [ ( mFresh ‘ 𝑡 )  /  𝑓 ] ( ( 𝑢  ⊆  ( ( mTC ‘ 𝑡 )  ×  V )  ∧  𝑓  ∈  ( mFRel ‘ 𝑡 )  ∧  𝑛  ∈  ( 𝑢  ↑pm  ( 𝑣  ×  ( mEx ‘ 𝑡 ) ) ) )  ∧  ∀ 𝑚  ∈  𝑣 ( ( ∀ 𝑒  ∈  𝑥 ( 𝑛  “  { 〈 𝑚 ,  𝑒 〉 } )  ⊆  ( 𝑢  “  { ( 1st  ‘ 𝑒 ) } )  ∧  ∀ 𝑦  ∈  ( mVR ‘ 𝑡 ) 〈 𝑚 ,  ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) 〉 𝑛 ( 𝑚 ‘ 𝑦 )  ∧  ∀ 𝑑 ∀ ℎ ∀ 𝑎 ( 〈 𝑑 ,  ℎ ,  𝑎 〉  ∈  ( mAx ‘ 𝑡 )  →  ( ( ∀ 𝑦 ∀ 𝑧 ( 𝑦 𝑑 𝑧  →  ( 𝑚 ‘ 𝑦 ) 𝑓 ( 𝑚 ‘ 𝑧 ) )  ∧  ℎ  ⊆  ( dom  𝑛  “  { 𝑚 } ) )  →  𝑚 dom  𝑛 𝑎 ) ) )  ∧  ( ∀ 𝑠  ∈  ran  ( mSubst ‘ 𝑡 ) ∀ 𝑒  ∈  ( mEx ‘ 𝑡 ) ∀ 𝑦 ( 〈 𝑠 ,  𝑚 〉 ( mVSubst ‘ 𝑡 ) 𝑦  →  ( 𝑛  “  { 〈 𝑚 ,  ( 𝑠 ‘ 𝑒 ) 〉 } )  =  ( 𝑛  “  { 〈 𝑦 ,  𝑒 〉 } ) )  ∧  ∀ 𝑝  ∈  𝑣 ∀ 𝑒  ∈  𝑥 ( ( 𝑚  ↾  ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) )  =  ( 𝑝  ↾  ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) )  →  ( 𝑛  “  { 〈 𝑚 ,  𝑒 〉 } )  =  ( 𝑛  “  { 〈 𝑝 ,  𝑒 〉 } ) )  ∧  ∀ 𝑦  ∈  𝑢 ∀ 𝑒  ∈  𝑥 ( ( 𝑚  “  ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) )  ⊆  ( 𝑓  “  { 𝑦 } )  →  ( 𝑛  “  { 〈 𝑚 ,  𝑒 〉 } )  ⊆  ( 𝑓  “  { 𝑦 } ) ) ) ) )  | 
						
						
							| 143 | 
							
								142 6 5
							 | 
							wsbc | 
							⊢ [ ( mUV ‘ 𝑡 )  /  𝑢 ] [ ( mEx ‘ 𝑡 )  /  𝑥 ] [ ( mVL ‘ 𝑡 )  /  𝑣 ] [ ( mEval ‘ 𝑡 )  /  𝑛 ] [ ( mFresh ‘ 𝑡 )  /  𝑓 ] ( ( 𝑢  ⊆  ( ( mTC ‘ 𝑡 )  ×  V )  ∧  𝑓  ∈  ( mFRel ‘ 𝑡 )  ∧  𝑛  ∈  ( 𝑢  ↑pm  ( 𝑣  ×  ( mEx ‘ 𝑡 ) ) ) )  ∧  ∀ 𝑚  ∈  𝑣 ( ( ∀ 𝑒  ∈  𝑥 ( 𝑛  “  { 〈 𝑚 ,  𝑒 〉 } )  ⊆  ( 𝑢  “  { ( 1st  ‘ 𝑒 ) } )  ∧  ∀ 𝑦  ∈  ( mVR ‘ 𝑡 ) 〈 𝑚 ,  ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) 〉 𝑛 ( 𝑚 ‘ 𝑦 )  ∧  ∀ 𝑑 ∀ ℎ ∀ 𝑎 ( 〈 𝑑 ,  ℎ ,  𝑎 〉  ∈  ( mAx ‘ 𝑡 )  →  ( ( ∀ 𝑦 ∀ 𝑧 ( 𝑦 𝑑 𝑧  →  ( 𝑚 ‘ 𝑦 ) 𝑓 ( 𝑚 ‘ 𝑧 ) )  ∧  ℎ  ⊆  ( dom  𝑛  “  { 𝑚 } ) )  →  𝑚 dom  𝑛 𝑎 ) ) )  ∧  ( ∀ 𝑠  ∈  ran  ( mSubst ‘ 𝑡 ) ∀ 𝑒  ∈  ( mEx ‘ 𝑡 ) ∀ 𝑦 ( 〈 𝑠 ,  𝑚 〉 ( mVSubst ‘ 𝑡 ) 𝑦  →  ( 𝑛  “  { 〈 𝑚 ,  ( 𝑠 ‘ 𝑒 ) 〉 } )  =  ( 𝑛  “  { 〈 𝑦 ,  𝑒 〉 } ) )  ∧  ∀ 𝑝  ∈  𝑣 ∀ 𝑒  ∈  𝑥 ( ( 𝑚  ↾  ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) )  =  ( 𝑝  ↾  ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) )  →  ( 𝑛  “  { 〈 𝑚 ,  𝑒 〉 } )  =  ( 𝑛  “  { 〈 𝑝 ,  𝑒 〉 } ) )  ∧  ∀ 𝑦  ∈  𝑢 ∀ 𝑒  ∈  𝑥 ( ( 𝑚  “  ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) )  ⊆  ( 𝑓  “  { 𝑦 } )  →  ( 𝑛  “  { 〈 𝑚 ,  𝑒 〉 } )  ⊆  ( 𝑓  “  { 𝑦 } ) ) ) ) )  | 
						
						
							| 144 | 
							
								143 1 2
							 | 
							crab | 
							⊢ { 𝑡  ∈  mFS  ∣  [ ( mUV ‘ 𝑡 )  /  𝑢 ] [ ( mEx ‘ 𝑡 )  /  𝑥 ] [ ( mVL ‘ 𝑡 )  /  𝑣 ] [ ( mEval ‘ 𝑡 )  /  𝑛 ] [ ( mFresh ‘ 𝑡 )  /  𝑓 ] ( ( 𝑢  ⊆  ( ( mTC ‘ 𝑡 )  ×  V )  ∧  𝑓  ∈  ( mFRel ‘ 𝑡 )  ∧  𝑛  ∈  ( 𝑢  ↑pm  ( 𝑣  ×  ( mEx ‘ 𝑡 ) ) ) )  ∧  ∀ 𝑚  ∈  𝑣 ( ( ∀ 𝑒  ∈  𝑥 ( 𝑛  “  { 〈 𝑚 ,  𝑒 〉 } )  ⊆  ( 𝑢  “  { ( 1st  ‘ 𝑒 ) } )  ∧  ∀ 𝑦  ∈  ( mVR ‘ 𝑡 ) 〈 𝑚 ,  ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) 〉 𝑛 ( 𝑚 ‘ 𝑦 )  ∧  ∀ 𝑑 ∀ ℎ ∀ 𝑎 ( 〈 𝑑 ,  ℎ ,  𝑎 〉  ∈  ( mAx ‘ 𝑡 )  →  ( ( ∀ 𝑦 ∀ 𝑧 ( 𝑦 𝑑 𝑧  →  ( 𝑚 ‘ 𝑦 ) 𝑓 ( 𝑚 ‘ 𝑧 ) )  ∧  ℎ  ⊆  ( dom  𝑛  “  { 𝑚 } ) )  →  𝑚 dom  𝑛 𝑎 ) ) )  ∧  ( ∀ 𝑠  ∈  ran  ( mSubst ‘ 𝑡 ) ∀ 𝑒  ∈  ( mEx ‘ 𝑡 ) ∀ 𝑦 ( 〈 𝑠 ,  𝑚 〉 ( mVSubst ‘ 𝑡 ) 𝑦  →  ( 𝑛  “  { 〈 𝑚 ,  ( 𝑠 ‘ 𝑒 ) 〉 } )  =  ( 𝑛  “  { 〈 𝑦 ,  𝑒 〉 } ) )  ∧  ∀ 𝑝  ∈  𝑣 ∀ 𝑒  ∈  𝑥 ( ( 𝑚  ↾  ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) )  =  ( 𝑝  ↾  ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) )  →  ( 𝑛  “  { 〈 𝑚 ,  𝑒 〉 } )  =  ( 𝑛  “  { 〈 𝑝 ,  𝑒 〉 } ) )  ∧  ∀ 𝑦  ∈  𝑢 ∀ 𝑒  ∈  𝑥 ( ( 𝑚  “  ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) )  ⊆  ( 𝑓  “  { 𝑦 } )  →  ( 𝑛  “  { 〈 𝑚 ,  𝑒 〉 } )  ⊆  ( 𝑓  “  { 𝑦 } ) ) ) ) ) }  | 
						
						
							| 145 | 
							
								0 144
							 | 
							wceq | 
							⊢ mMdl  =  { 𝑡  ∈  mFS  ∣  [ ( mUV ‘ 𝑡 )  /  𝑢 ] [ ( mEx ‘ 𝑡 )  /  𝑥 ] [ ( mVL ‘ 𝑡 )  /  𝑣 ] [ ( mEval ‘ 𝑡 )  /  𝑛 ] [ ( mFresh ‘ 𝑡 )  /  𝑓 ] ( ( 𝑢  ⊆  ( ( mTC ‘ 𝑡 )  ×  V )  ∧  𝑓  ∈  ( mFRel ‘ 𝑡 )  ∧  𝑛  ∈  ( 𝑢  ↑pm  ( 𝑣  ×  ( mEx ‘ 𝑡 ) ) ) )  ∧  ∀ 𝑚  ∈  𝑣 ( ( ∀ 𝑒  ∈  𝑥 ( 𝑛  “  { 〈 𝑚 ,  𝑒 〉 } )  ⊆  ( 𝑢  “  { ( 1st  ‘ 𝑒 ) } )  ∧  ∀ 𝑦  ∈  ( mVR ‘ 𝑡 ) 〈 𝑚 ,  ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) 〉 𝑛 ( 𝑚 ‘ 𝑦 )  ∧  ∀ 𝑑 ∀ ℎ ∀ 𝑎 ( 〈 𝑑 ,  ℎ ,  𝑎 〉  ∈  ( mAx ‘ 𝑡 )  →  ( ( ∀ 𝑦 ∀ 𝑧 ( 𝑦 𝑑 𝑧  →  ( 𝑚 ‘ 𝑦 ) 𝑓 ( 𝑚 ‘ 𝑧 ) )  ∧  ℎ  ⊆  ( dom  𝑛  “  { 𝑚 } ) )  →  𝑚 dom  𝑛 𝑎 ) ) )  ∧  ( ∀ 𝑠  ∈  ran  ( mSubst ‘ 𝑡 ) ∀ 𝑒  ∈  ( mEx ‘ 𝑡 ) ∀ 𝑦 ( 〈 𝑠 ,  𝑚 〉 ( mVSubst ‘ 𝑡 ) 𝑦  →  ( 𝑛  “  { 〈 𝑚 ,  ( 𝑠 ‘ 𝑒 ) 〉 } )  =  ( 𝑛  “  { 〈 𝑦 ,  𝑒 〉 } ) )  ∧  ∀ 𝑝  ∈  𝑣 ∀ 𝑒  ∈  𝑥 ( ( 𝑚  ↾  ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) )  =  ( 𝑝  ↾  ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) )  →  ( 𝑛  “  { 〈 𝑚 ,  𝑒 〉 } )  =  ( 𝑛  “  { 〈 𝑝 ,  𝑒 〉 } ) )  ∧  ∀ 𝑦  ∈  𝑢 ∀ 𝑒  ∈  𝑥 ( ( 𝑚  “  ( ( mVars ‘ 𝑡 ) ‘ 𝑒 ) )  ⊆  ( 𝑓  “  { 𝑦 } )  →  ( 𝑛  “  { 〈 𝑚 ,  𝑒 〉 } )  ⊆  ( 𝑓  “  { 𝑦 } ) ) ) ) ) }  |