| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cmetu |
⊢ metUnif |
| 1 |
|
vd |
⊢ 𝑑 |
| 2 |
|
cpsmet |
⊢ PsMet |
| 3 |
2
|
crn |
⊢ ran PsMet |
| 4 |
3
|
cuni |
⊢ ∪ ran PsMet |
| 5 |
1
|
cv |
⊢ 𝑑 |
| 6 |
5
|
cdm |
⊢ dom 𝑑 |
| 7 |
6
|
cdm |
⊢ dom dom 𝑑 |
| 8 |
7 7
|
cxp |
⊢ ( dom dom 𝑑 × dom dom 𝑑 ) |
| 9 |
|
cfg |
⊢ filGen |
| 10 |
|
va |
⊢ 𝑎 |
| 11 |
|
crp |
⊢ ℝ+ |
| 12 |
5
|
ccnv |
⊢ ◡ 𝑑 |
| 13 |
|
cc0 |
⊢ 0 |
| 14 |
|
cico |
⊢ [,) |
| 15 |
10
|
cv |
⊢ 𝑎 |
| 16 |
13 15 14
|
co |
⊢ ( 0 [,) 𝑎 ) |
| 17 |
12 16
|
cima |
⊢ ( ◡ 𝑑 “ ( 0 [,) 𝑎 ) ) |
| 18 |
10 11 17
|
cmpt |
⊢ ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝑑 “ ( 0 [,) 𝑎 ) ) ) |
| 19 |
18
|
crn |
⊢ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝑑 “ ( 0 [,) 𝑎 ) ) ) |
| 20 |
8 19 9
|
co |
⊢ ( ( dom dom 𝑑 × dom dom 𝑑 ) filGen ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝑑 “ ( 0 [,) 𝑎 ) ) ) ) |
| 21 |
1 4 20
|
cmpt |
⊢ ( 𝑑 ∈ ∪ ran PsMet ↦ ( ( dom dom 𝑑 × dom dom 𝑑 ) filGen ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝑑 “ ( 0 [,) 𝑎 ) ) ) ) ) |
| 22 |
0 21
|
wceq |
⊢ metUnif = ( 𝑑 ∈ ∪ ran PsMet ↦ ( ( dom dom 𝑑 × dom dom 𝑑 ) filGen ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝑑 “ ( 0 [,) 𝑎 ) ) ) ) ) |