Metamath Proof Explorer


Definition df-metu

Description: Define the function mapping metrics to the uniform structure generated by that metric. (Contributed by Thierry Arnoux, 1-Dec-2017) (Revised by Thierry Arnoux, 11-Feb-2018)

Ref Expression
Assertion df-metu metUnif=dranPsMetdomdomd×domdomdfilGenrana+d-10a

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmetu classmetUnif
1 vd setvard
2 cpsmet classPsMet
3 2 crn classranPsMet
4 3 cuni classranPsMet
5 1 cv setvard
6 5 cdm classdomd
7 6 cdm classdomdomd
8 7 7 cxp classdomdomd×domdomd
9 cfg classfilGen
10 va setvara
11 crp class+
12 5 ccnv classd-1
13 cc0 class0
14 cico class.
15 10 cv setvara
16 13 15 14 co class0a
17 12 16 cima classd-10a
18 10 11 17 cmpt classa+d-10a
19 18 crn classrana+d-10a
20 8 19 9 co classdomdomd×domdomdfilGenrana+d-10a
21 1 4 20 cmpt classdranPsMetdomdomd×domdomdfilGenrana+d-10a
22 0 21 wceq wffmetUnif=dranPsMetdomdomd×domdomdfilGenrana+d-10a