| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cpt |
⊢ ∏t |
| 1 |
|
vf |
⊢ 𝑓 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
ctg |
⊢ topGen |
| 4 |
|
vx |
⊢ 𝑥 |
| 5 |
|
vg |
⊢ 𝑔 |
| 6 |
5
|
cv |
⊢ 𝑔 |
| 7 |
1
|
cv |
⊢ 𝑓 |
| 8 |
7
|
cdm |
⊢ dom 𝑓 |
| 9 |
6 8
|
wfn |
⊢ 𝑔 Fn dom 𝑓 |
| 10 |
|
vy |
⊢ 𝑦 |
| 11 |
10
|
cv |
⊢ 𝑦 |
| 12 |
11 6
|
cfv |
⊢ ( 𝑔 ‘ 𝑦 ) |
| 13 |
11 7
|
cfv |
⊢ ( 𝑓 ‘ 𝑦 ) |
| 14 |
12 13
|
wcel |
⊢ ( 𝑔 ‘ 𝑦 ) ∈ ( 𝑓 ‘ 𝑦 ) |
| 15 |
14 10 8
|
wral |
⊢ ∀ 𝑦 ∈ dom 𝑓 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝑓 ‘ 𝑦 ) |
| 16 |
|
vz |
⊢ 𝑧 |
| 17 |
|
cfn |
⊢ Fin |
| 18 |
16
|
cv |
⊢ 𝑧 |
| 19 |
8 18
|
cdif |
⊢ ( dom 𝑓 ∖ 𝑧 ) |
| 20 |
13
|
cuni |
⊢ ∪ ( 𝑓 ‘ 𝑦 ) |
| 21 |
12 20
|
wceq |
⊢ ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝑓 ‘ 𝑦 ) |
| 22 |
21 10 19
|
wral |
⊢ ∀ 𝑦 ∈ ( dom 𝑓 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝑓 ‘ 𝑦 ) |
| 23 |
22 16 17
|
wrex |
⊢ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( dom 𝑓 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝑓 ‘ 𝑦 ) |
| 24 |
9 15 23
|
w3a |
⊢ ( 𝑔 Fn dom 𝑓 ∧ ∀ 𝑦 ∈ dom 𝑓 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝑓 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( dom 𝑓 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝑓 ‘ 𝑦 ) ) |
| 25 |
4
|
cv |
⊢ 𝑥 |
| 26 |
10 8 12
|
cixp |
⊢ X 𝑦 ∈ dom 𝑓 ( 𝑔 ‘ 𝑦 ) |
| 27 |
25 26
|
wceq |
⊢ 𝑥 = X 𝑦 ∈ dom 𝑓 ( 𝑔 ‘ 𝑦 ) |
| 28 |
24 27
|
wa |
⊢ ( ( 𝑔 Fn dom 𝑓 ∧ ∀ 𝑦 ∈ dom 𝑓 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝑓 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( dom 𝑓 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝑓 ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ dom 𝑓 ( 𝑔 ‘ 𝑦 ) ) |
| 29 |
28 5
|
wex |
⊢ ∃ 𝑔 ( ( 𝑔 Fn dom 𝑓 ∧ ∀ 𝑦 ∈ dom 𝑓 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝑓 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( dom 𝑓 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝑓 ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ dom 𝑓 ( 𝑔 ‘ 𝑦 ) ) |
| 30 |
29 4
|
cab |
⊢ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn dom 𝑓 ∧ ∀ 𝑦 ∈ dom 𝑓 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝑓 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( dom 𝑓 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝑓 ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ dom 𝑓 ( 𝑔 ‘ 𝑦 ) ) } |
| 31 |
30 3
|
cfv |
⊢ ( topGen ‘ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn dom 𝑓 ∧ ∀ 𝑦 ∈ dom 𝑓 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝑓 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( dom 𝑓 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝑓 ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ dom 𝑓 ( 𝑔 ‘ 𝑦 ) ) } ) |
| 32 |
1 2 31
|
cmpt |
⊢ ( 𝑓 ∈ V ↦ ( topGen ‘ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn dom 𝑓 ∧ ∀ 𝑦 ∈ dom 𝑓 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝑓 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( dom 𝑓 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝑓 ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ dom 𝑓 ( 𝑔 ‘ 𝑦 ) ) } ) ) |
| 33 |
0 32
|
wceq |
⊢ ∏t = ( 𝑓 ∈ V ↦ ( topGen ‘ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn dom 𝑓 ∧ ∀ 𝑦 ∈ dom 𝑓 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝑓 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( dom 𝑓 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝑓 ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ dom 𝑓 ( 𝑔 ‘ 𝑦 ) ) } ) ) |