Description: Define the product topology on a collection of topologies. For convenience, it is defined on arbitrary collections of sets, expressed as a function from some index set to the subbases of each factor space. (Contributed by Mario Carneiro, 3-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | df-pt | |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cpt | |
|
1 | vf | |
|
2 | cvv | |
|
3 | ctg | |
|
4 | vx | |
|
5 | vg | |
|
6 | 5 | cv | |
7 | 1 | cv | |
8 | 7 | cdm | |
9 | 6 8 | wfn | |
10 | vy | |
|
11 | 10 | cv | |
12 | 11 6 | cfv | |
13 | 11 7 | cfv | |
14 | 12 13 | wcel | |
15 | 14 10 8 | wral | |
16 | vz | |
|
17 | cfn | |
|
18 | 16 | cv | |
19 | 8 18 | cdif | |
20 | 13 | cuni | |
21 | 12 20 | wceq | |
22 | 21 10 19 | wral | |
23 | 22 16 17 | wrex | |
24 | 9 15 23 | w3a | |
25 | 4 | cv | |
26 | 10 8 12 | cixp | |
27 | 25 26 | wceq | |
28 | 24 27 | wa | |
29 | 28 5 | wex | |
30 | 29 4 | cab | |
31 | 30 3 | cfv | |
32 | 1 2 31 | cmpt | |
33 | 0 32 | wceq | |