Metamath Proof Explorer


Definition df-pt

Description: Define the product topology on a collection of topologies. For convenience, it is defined on arbitrary collections of sets, expressed as a function from some index set to the subbases of each factor space. (Contributed by Mario Carneiro, 3-Feb-2015)

Ref Expression
Assertion df-pt 𝑡=fVtopGenx|ggFndomfydomfgyfyzFinydomfzgy=fyx=ydomfgy

Detailed syntax breakdown

Step Hyp Ref Expression
0 cpt class𝑡
1 vf setvarf
2 cvv classV
3 ctg classtopGen
4 vx setvarx
5 vg setvarg
6 5 cv setvarg
7 1 cv setvarf
8 7 cdm classdomf
9 6 8 wfn wffgFndomf
10 vy setvary
11 10 cv setvary
12 11 6 cfv classgy
13 11 7 cfv classfy
14 12 13 wcel wffgyfy
15 14 10 8 wral wffydomfgyfy
16 vz setvarz
17 cfn classFin
18 16 cv setvarz
19 8 18 cdif classdomfz
20 13 cuni classfy
21 12 20 wceq wffgy=fy
22 21 10 19 wral wffydomfzgy=fy
23 22 16 17 wrex wffzFinydomfzgy=fy
24 9 15 23 w3a wffgFndomfydomfgyfyzFinydomfzgy=fy
25 4 cv setvarx
26 10 8 12 cixp classydomfgy
27 25 26 wceq wffx=ydomfgy
28 24 27 wa wffgFndomfydomfgyfyzFinydomfzgy=fyx=ydomfgy
29 28 5 wex wffggFndomfydomfgyfyzFinydomfzgy=fyx=ydomfgy
30 29 4 cab classx|ggFndomfydomfgyfyzFinydomfzgy=fyx=ydomfgy
31 30 3 cfv classtopGenx|ggFndomfydomfgyfyzFinydomfzgy=fyx=ydomfgy
32 1 2 31 cmpt classfVtopGenx|ggFndomfydomfgyfyzFinydomfzgy=fyx=ydomfgy
33 0 32 wceq wff𝑡=fVtopGenx|ggFndomfydomfgyfyzFinydomfzgy=fyx=ydomfgy