| Step | Hyp | Ref | Expression | 
						
							| 0 |  | csitm | ⊢ sitm | 
						
							| 1 |  | vw | ⊢ 𝑤 | 
						
							| 2 |  | cvv | ⊢ V | 
						
							| 3 |  | vm | ⊢ 𝑚 | 
						
							| 4 |  | cmeas | ⊢ measures | 
						
							| 5 | 4 | crn | ⊢ ran  measures | 
						
							| 6 | 5 | cuni | ⊢ ∪  ran  measures | 
						
							| 7 |  | vf | ⊢ 𝑓 | 
						
							| 8 | 1 | cv | ⊢ 𝑤 | 
						
							| 9 |  | csitg | ⊢ sitg | 
						
							| 10 | 3 | cv | ⊢ 𝑚 | 
						
							| 11 | 8 10 9 | co | ⊢ ( 𝑤 sitg 𝑚 ) | 
						
							| 12 | 11 | cdm | ⊢ dom  ( 𝑤 sitg 𝑚 ) | 
						
							| 13 |  | vg | ⊢ 𝑔 | 
						
							| 14 |  | cxrs | ⊢ ℝ*𝑠 | 
						
							| 15 |  | cress | ⊢  ↾s | 
						
							| 16 |  | cc0 | ⊢ 0 | 
						
							| 17 |  | cicc | ⊢ [,] | 
						
							| 18 |  | cpnf | ⊢ +∞ | 
						
							| 19 | 16 18 17 | co | ⊢ ( 0 [,] +∞ ) | 
						
							| 20 | 14 19 15 | co | ⊢ ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) ) | 
						
							| 21 | 20 10 9 | co | ⊢ ( ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) ) sitg 𝑚 ) | 
						
							| 22 | 7 | cv | ⊢ 𝑓 | 
						
							| 23 |  | cds | ⊢ dist | 
						
							| 24 | 8 23 | cfv | ⊢ ( dist ‘ 𝑤 ) | 
						
							| 25 | 24 | cof | ⊢  ∘f  ( dist ‘ 𝑤 ) | 
						
							| 26 | 13 | cv | ⊢ 𝑔 | 
						
							| 27 | 22 26 25 | co | ⊢ ( 𝑓  ∘f  ( dist ‘ 𝑤 ) 𝑔 ) | 
						
							| 28 | 27 21 | cfv | ⊢ ( ( ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) ) sitg 𝑚 ) ‘ ( 𝑓  ∘f  ( dist ‘ 𝑤 ) 𝑔 ) ) | 
						
							| 29 | 7 13 12 12 28 | cmpo | ⊢ ( 𝑓  ∈  dom  ( 𝑤 sitg 𝑚 ) ,  𝑔  ∈  dom  ( 𝑤 sitg 𝑚 )  ↦  ( ( ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) ) sitg 𝑚 ) ‘ ( 𝑓  ∘f  ( dist ‘ 𝑤 ) 𝑔 ) ) ) | 
						
							| 30 | 1 3 2 6 29 | cmpo | ⊢ ( 𝑤  ∈  V ,  𝑚  ∈  ∪  ran  measures  ↦  ( 𝑓  ∈  dom  ( 𝑤 sitg 𝑚 ) ,  𝑔  ∈  dom  ( 𝑤 sitg 𝑚 )  ↦  ( ( ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) ) sitg 𝑚 ) ‘ ( 𝑓  ∘f  ( dist ‘ 𝑤 ) 𝑔 ) ) ) ) | 
						
							| 31 | 0 30 | wceq | ⊢ sitm  =  ( 𝑤  ∈  V ,  𝑚  ∈  ∪  ran  measures  ↦  ( 𝑓  ∈  dom  ( 𝑤 sitg 𝑚 ) ,  𝑔  ∈  dom  ( 𝑤 sitg 𝑚 )  ↦  ( ( ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) ) sitg 𝑚 ) ‘ ( 𝑓  ∘f  ( dist ‘ 𝑤 ) 𝑔 ) ) ) ) |