Step |
Hyp |
Ref |
Expression |
0 |
|
csitm |
|- sitm |
1 |
|
vw |
|- w |
2 |
|
cvv |
|- _V |
3 |
|
vm |
|- m |
4 |
|
cmeas |
|- measures |
5 |
4
|
crn |
|- ran measures |
6 |
5
|
cuni |
|- U. ran measures |
7 |
|
vf |
|- f |
8 |
1
|
cv |
|- w |
9 |
|
csitg |
|- sitg |
10 |
3
|
cv |
|- m |
11 |
8 10 9
|
co |
|- ( w sitg m ) |
12 |
11
|
cdm |
|- dom ( w sitg m ) |
13 |
|
vg |
|- g |
14 |
|
cxrs |
|- RR*s |
15 |
|
cress |
|- |`s |
16 |
|
cc0 |
|- 0 |
17 |
|
cicc |
|- [,] |
18 |
|
cpnf |
|- +oo |
19 |
16 18 17
|
co |
|- ( 0 [,] +oo ) |
20 |
14 19 15
|
co |
|- ( RR*s |`s ( 0 [,] +oo ) ) |
21 |
20 10 9
|
co |
|- ( ( RR*s |`s ( 0 [,] +oo ) ) sitg m ) |
22 |
7
|
cv |
|- f |
23 |
|
cds |
|- dist |
24 |
8 23
|
cfv |
|- ( dist ` w ) |
25 |
24
|
cof |
|- oF ( dist ` w ) |
26 |
13
|
cv |
|- g |
27 |
22 26 25
|
co |
|- ( f oF ( dist ` w ) g ) |
28 |
27 21
|
cfv |
|- ( ( ( RR*s |`s ( 0 [,] +oo ) ) sitg m ) ` ( f oF ( dist ` w ) g ) ) |
29 |
7 13 12 12 28
|
cmpo |
|- ( f e. dom ( w sitg m ) , g e. dom ( w sitg m ) |-> ( ( ( RR*s |`s ( 0 [,] +oo ) ) sitg m ) ` ( f oF ( dist ` w ) g ) ) ) |
30 |
1 3 2 6 29
|
cmpo |
|- ( w e. _V , m e. U. ran measures |-> ( f e. dom ( w sitg m ) , g e. dom ( w sitg m ) |-> ( ( ( RR*s |`s ( 0 [,] +oo ) ) sitg m ) ` ( f oF ( dist ` w ) g ) ) ) ) |
31 |
0 30
|
wceq |
|- sitm = ( w e. _V , m e. U. ran measures |-> ( f e. dom ( w sitg m ) , g e. dom ( w sitg m ) |-> ( ( ( RR*s |`s ( 0 [,] +oo ) ) sitg m ) ` ( f oF ( dist ` w ) g ) ) ) ) |