| Step | Hyp | Ref | Expression | 
						
							| 0 |  | csitm |  |-  sitm | 
						
							| 1 |  | vw |  |-  w | 
						
							| 2 |  | cvv |  |-  _V | 
						
							| 3 |  | vm |  |-  m | 
						
							| 4 |  | cmeas |  |-  measures | 
						
							| 5 | 4 | crn |  |-  ran measures | 
						
							| 6 | 5 | cuni |  |-  U. ran measures | 
						
							| 7 |  | vf |  |-  f | 
						
							| 8 | 1 | cv |  |-  w | 
						
							| 9 |  | csitg |  |-  sitg | 
						
							| 10 | 3 | cv |  |-  m | 
						
							| 11 | 8 10 9 | co |  |-  ( w sitg m ) | 
						
							| 12 | 11 | cdm |  |-  dom ( w sitg m ) | 
						
							| 13 |  | vg |  |-  g | 
						
							| 14 |  | cxrs |  |-  RR*s | 
						
							| 15 |  | cress |  |-  |`s | 
						
							| 16 |  | cc0 |  |-  0 | 
						
							| 17 |  | cicc |  |-  [,] | 
						
							| 18 |  | cpnf |  |-  +oo | 
						
							| 19 | 16 18 17 | co |  |-  ( 0 [,] +oo ) | 
						
							| 20 | 14 19 15 | co |  |-  ( RR*s |`s ( 0 [,] +oo ) ) | 
						
							| 21 | 20 10 9 | co |  |-  ( ( RR*s |`s ( 0 [,] +oo ) ) sitg m ) | 
						
							| 22 | 7 | cv |  |-  f | 
						
							| 23 |  | cds |  |-  dist | 
						
							| 24 | 8 23 | cfv |  |-  ( dist ` w ) | 
						
							| 25 | 24 | cof |  |-  oF ( dist ` w ) | 
						
							| 26 | 13 | cv |  |-  g | 
						
							| 27 | 22 26 25 | co |  |-  ( f oF ( dist ` w ) g ) | 
						
							| 28 | 27 21 | cfv |  |-  ( ( ( RR*s |`s ( 0 [,] +oo ) ) sitg m ) ` ( f oF ( dist ` w ) g ) ) | 
						
							| 29 | 7 13 12 12 28 | cmpo |  |-  ( f e. dom ( w sitg m ) , g e. dom ( w sitg m ) |-> ( ( ( RR*s |`s ( 0 [,] +oo ) ) sitg m ) ` ( f oF ( dist ` w ) g ) ) ) | 
						
							| 30 | 1 3 2 6 29 | cmpo |  |-  ( w e. _V , m e. U. ran measures |-> ( f e. dom ( w sitg m ) , g e. dom ( w sitg m ) |-> ( ( ( RR*s |`s ( 0 [,] +oo ) ) sitg m ) ` ( f oF ( dist ` w ) g ) ) ) ) | 
						
							| 31 | 0 30 | wceq |  |-  sitm = ( w e. _V , m e. U. ran measures |-> ( f e. dom ( w sitg m ) , g e. dom ( w sitg m ) |-> ( ( ( RR*s |`s ( 0 [,] +oo ) ) sitg m ) ` ( f oF ( dist ` w ) g ) ) ) ) |