| Step |
Hyp |
Ref |
Expression |
| 0 |
|
csitm |
|- sitm |
| 1 |
|
vw |
|- w |
| 2 |
|
cvv |
|- _V |
| 3 |
|
vm |
|- m |
| 4 |
|
cmeas |
|- measures |
| 5 |
4
|
crn |
|- ran measures |
| 6 |
5
|
cuni |
|- U. ran measures |
| 7 |
|
vf |
|- f |
| 8 |
1
|
cv |
|- w |
| 9 |
|
csitg |
|- sitg |
| 10 |
3
|
cv |
|- m |
| 11 |
8 10 9
|
co |
|- ( w sitg m ) |
| 12 |
11
|
cdm |
|- dom ( w sitg m ) |
| 13 |
|
vg |
|- g |
| 14 |
|
cxrs |
|- RR*s |
| 15 |
|
cress |
|- |`s |
| 16 |
|
cc0 |
|- 0 |
| 17 |
|
cicc |
|- [,] |
| 18 |
|
cpnf |
|- +oo |
| 19 |
16 18 17
|
co |
|- ( 0 [,] +oo ) |
| 20 |
14 19 15
|
co |
|- ( RR*s |`s ( 0 [,] +oo ) ) |
| 21 |
20 10 9
|
co |
|- ( ( RR*s |`s ( 0 [,] +oo ) ) sitg m ) |
| 22 |
7
|
cv |
|- f |
| 23 |
|
cds |
|- dist |
| 24 |
8 23
|
cfv |
|- ( dist ` w ) |
| 25 |
24
|
cof |
|- oF ( dist ` w ) |
| 26 |
13
|
cv |
|- g |
| 27 |
22 26 25
|
co |
|- ( f oF ( dist ` w ) g ) |
| 28 |
27 21
|
cfv |
|- ( ( ( RR*s |`s ( 0 [,] +oo ) ) sitg m ) ` ( f oF ( dist ` w ) g ) ) |
| 29 |
7 13 12 12 28
|
cmpo |
|- ( f e. dom ( w sitg m ) , g e. dom ( w sitg m ) |-> ( ( ( RR*s |`s ( 0 [,] +oo ) ) sitg m ) ` ( f oF ( dist ` w ) g ) ) ) |
| 30 |
1 3 2 6 29
|
cmpo |
|- ( w e. _V , m e. U. ran measures |-> ( f e. dom ( w sitg m ) , g e. dom ( w sitg m ) |-> ( ( ( RR*s |`s ( 0 [,] +oo ) ) sitg m ) ` ( f oF ( dist ` w ) g ) ) ) ) |
| 31 |
0 30
|
wceq |
|- sitm = ( w e. _V , m e. U. ran measures |-> ( f e. dom ( w sitg m ) , g e. dom ( w sitg m ) |-> ( ( ( RR*s |`s ( 0 [,] +oo ) ) sitg m ) ` ( f oF ( dist ` w ) g ) ) ) ) |