| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sitgval.b |
|- B = ( Base ` W ) |
| 2 |
|
sitgval.j |
|- J = ( TopOpen ` W ) |
| 3 |
|
sitgval.s |
|- S = ( sigaGen ` J ) |
| 4 |
|
sitgval.0 |
|- .0. = ( 0g ` W ) |
| 5 |
|
sitgval.x |
|- .x. = ( .s ` W ) |
| 6 |
|
sitgval.h |
|- H = ( RRHom ` ( Scalar ` W ) ) |
| 7 |
|
sitgval.1 |
|- ( ph -> W e. V ) |
| 8 |
|
sitgval.2 |
|- ( ph -> M e. U. ran measures ) |
| 9 |
7
|
elexd |
|- ( ph -> W e. _V ) |
| 10 |
|
2fveq3 |
|- ( w = W -> ( sigaGen ` ( TopOpen ` w ) ) = ( sigaGen ` ( TopOpen ` W ) ) ) |
| 11 |
2
|
fveq2i |
|- ( sigaGen ` J ) = ( sigaGen ` ( TopOpen ` W ) ) |
| 12 |
3 11
|
eqtri |
|- S = ( sigaGen ` ( TopOpen ` W ) ) |
| 13 |
10 12
|
eqtr4di |
|- ( w = W -> ( sigaGen ` ( TopOpen ` w ) ) = S ) |
| 14 |
13
|
oveq2d |
|- ( w = W -> ( dom m MblFnM ( sigaGen ` ( TopOpen ` w ) ) ) = ( dom m MblFnM S ) ) |
| 15 |
|
fveq2 |
|- ( w = W -> ( 0g ` w ) = ( 0g ` W ) ) |
| 16 |
15 4
|
eqtr4di |
|- ( w = W -> ( 0g ` w ) = .0. ) |
| 17 |
16
|
sneqd |
|- ( w = W -> { ( 0g ` w ) } = { .0. } ) |
| 18 |
17
|
difeq2d |
|- ( w = W -> ( ran g \ { ( 0g ` w ) } ) = ( ran g \ { .0. } ) ) |
| 19 |
18
|
raleqdv |
|- ( w = W -> ( A. x e. ( ran g \ { ( 0g ` w ) } ) ( m ` ( `' g " { x } ) ) e. ( 0 [,) +oo ) <-> A. x e. ( ran g \ { .0. } ) ( m ` ( `' g " { x } ) ) e. ( 0 [,) +oo ) ) ) |
| 20 |
19
|
anbi2d |
|- ( w = W -> ( ( ran g e. Fin /\ A. x e. ( ran g \ { ( 0g ` w ) } ) ( m ` ( `' g " { x } ) ) e. ( 0 [,) +oo ) ) <-> ( ran g e. Fin /\ A. x e. ( ran g \ { .0. } ) ( m ` ( `' g " { x } ) ) e. ( 0 [,) +oo ) ) ) ) |
| 21 |
14 20
|
rabeqbidv |
|- ( w = W -> { g e. ( dom m MblFnM ( sigaGen ` ( TopOpen ` w ) ) ) | ( ran g e. Fin /\ A. x e. ( ran g \ { ( 0g ` w ) } ) ( m ` ( `' g " { x } ) ) e. ( 0 [,) +oo ) ) } = { g e. ( dom m MblFnM S ) | ( ran g e. Fin /\ A. x e. ( ran g \ { .0. } ) ( m ` ( `' g " { x } ) ) e. ( 0 [,) +oo ) ) } ) |
| 22 |
|
id |
|- ( w = W -> w = W ) |
| 23 |
17
|
difeq2d |
|- ( w = W -> ( ran f \ { ( 0g ` w ) } ) = ( ran f \ { .0. } ) ) |
| 24 |
|
fveq2 |
|- ( w = W -> ( .s ` w ) = ( .s ` W ) ) |
| 25 |
24 5
|
eqtr4di |
|- ( w = W -> ( .s ` w ) = .x. ) |
| 26 |
|
2fveq3 |
|- ( w = W -> ( RRHom ` ( Scalar ` w ) ) = ( RRHom ` ( Scalar ` W ) ) ) |
| 27 |
26 6
|
eqtr4di |
|- ( w = W -> ( RRHom ` ( Scalar ` w ) ) = H ) |
| 28 |
27
|
fveq1d |
|- ( w = W -> ( ( RRHom ` ( Scalar ` w ) ) ` ( m ` ( `' f " { x } ) ) ) = ( H ` ( m ` ( `' f " { x } ) ) ) ) |
| 29 |
|
eqidd |
|- ( w = W -> x = x ) |
| 30 |
25 28 29
|
oveq123d |
|- ( w = W -> ( ( ( RRHom ` ( Scalar ` w ) ) ` ( m ` ( `' f " { x } ) ) ) ( .s ` w ) x ) = ( ( H ` ( m ` ( `' f " { x } ) ) ) .x. x ) ) |
| 31 |
23 30
|
mpteq12dv |
|- ( w = W -> ( x e. ( ran f \ { ( 0g ` w ) } ) |-> ( ( ( RRHom ` ( Scalar ` w ) ) ` ( m ` ( `' f " { x } ) ) ) ( .s ` w ) x ) ) = ( x e. ( ran f \ { .0. } ) |-> ( ( H ` ( m ` ( `' f " { x } ) ) ) .x. x ) ) ) |
| 32 |
22 31
|
oveq12d |
|- ( w = W -> ( w gsum ( x e. ( ran f \ { ( 0g ` w ) } ) |-> ( ( ( RRHom ` ( Scalar ` w ) ) ` ( m ` ( `' f " { x } ) ) ) ( .s ` w ) x ) ) ) = ( W gsum ( x e. ( ran f \ { .0. } ) |-> ( ( H ` ( m ` ( `' f " { x } ) ) ) .x. x ) ) ) ) |
| 33 |
21 32
|
mpteq12dv |
|- ( w = W -> ( f e. { g e. ( dom m MblFnM ( sigaGen ` ( TopOpen ` w ) ) ) | ( ran g e. Fin /\ A. x e. ( ran g \ { ( 0g ` w ) } ) ( m ` ( `' g " { x } ) ) e. ( 0 [,) +oo ) ) } |-> ( w gsum ( x e. ( ran f \ { ( 0g ` w ) } ) |-> ( ( ( RRHom ` ( Scalar ` w ) ) ` ( m ` ( `' f " { x } ) ) ) ( .s ` w ) x ) ) ) ) = ( f e. { g e. ( dom m MblFnM S ) | ( ran g e. Fin /\ A. x e. ( ran g \ { .0. } ) ( m ` ( `' g " { x } ) ) e. ( 0 [,) +oo ) ) } |-> ( W gsum ( x e. ( ran f \ { .0. } ) |-> ( ( H ` ( m ` ( `' f " { x } ) ) ) .x. x ) ) ) ) ) |
| 34 |
|
dmeq |
|- ( m = M -> dom m = dom M ) |
| 35 |
34
|
oveq1d |
|- ( m = M -> ( dom m MblFnM S ) = ( dom M MblFnM S ) ) |
| 36 |
|
fveq1 |
|- ( m = M -> ( m ` ( `' g " { x } ) ) = ( M ` ( `' g " { x } ) ) ) |
| 37 |
36
|
eleq1d |
|- ( m = M -> ( ( m ` ( `' g " { x } ) ) e. ( 0 [,) +oo ) <-> ( M ` ( `' g " { x } ) ) e. ( 0 [,) +oo ) ) ) |
| 38 |
37
|
ralbidv |
|- ( m = M -> ( A. x e. ( ran g \ { .0. } ) ( m ` ( `' g " { x } ) ) e. ( 0 [,) +oo ) <-> A. x e. ( ran g \ { .0. } ) ( M ` ( `' g " { x } ) ) e. ( 0 [,) +oo ) ) ) |
| 39 |
38
|
anbi2d |
|- ( m = M -> ( ( ran g e. Fin /\ A. x e. ( ran g \ { .0. } ) ( m ` ( `' g " { x } ) ) e. ( 0 [,) +oo ) ) <-> ( ran g e. Fin /\ A. x e. ( ran g \ { .0. } ) ( M ` ( `' g " { x } ) ) e. ( 0 [,) +oo ) ) ) ) |
| 40 |
35 39
|
rabeqbidv |
|- ( m = M -> { g e. ( dom m MblFnM S ) | ( ran g e. Fin /\ A. x e. ( ran g \ { .0. } ) ( m ` ( `' g " { x } ) ) e. ( 0 [,) +oo ) ) } = { g e. ( dom M MblFnM S ) | ( ran g e. Fin /\ A. x e. ( ran g \ { .0. } ) ( M ` ( `' g " { x } ) ) e. ( 0 [,) +oo ) ) } ) |
| 41 |
|
simpl |
|- ( ( m = M /\ x e. ( ran f \ { .0. } ) ) -> m = M ) |
| 42 |
41
|
fveq1d |
|- ( ( m = M /\ x e. ( ran f \ { .0. } ) ) -> ( m ` ( `' f " { x } ) ) = ( M ` ( `' f " { x } ) ) ) |
| 43 |
42
|
fveq2d |
|- ( ( m = M /\ x e. ( ran f \ { .0. } ) ) -> ( H ` ( m ` ( `' f " { x } ) ) ) = ( H ` ( M ` ( `' f " { x } ) ) ) ) |
| 44 |
43
|
oveq1d |
|- ( ( m = M /\ x e. ( ran f \ { .0. } ) ) -> ( ( H ` ( m ` ( `' f " { x } ) ) ) .x. x ) = ( ( H ` ( M ` ( `' f " { x } ) ) ) .x. x ) ) |
| 45 |
44
|
mpteq2dva |
|- ( m = M -> ( x e. ( ran f \ { .0. } ) |-> ( ( H ` ( m ` ( `' f " { x } ) ) ) .x. x ) ) = ( x e. ( ran f \ { .0. } ) |-> ( ( H ` ( M ` ( `' f " { x } ) ) ) .x. x ) ) ) |
| 46 |
45
|
oveq2d |
|- ( m = M -> ( W gsum ( x e. ( ran f \ { .0. } ) |-> ( ( H ` ( m ` ( `' f " { x } ) ) ) .x. x ) ) ) = ( W gsum ( x e. ( ran f \ { .0. } ) |-> ( ( H ` ( M ` ( `' f " { x } ) ) ) .x. x ) ) ) ) |
| 47 |
40 46
|
mpteq12dv |
|- ( m = M -> ( f e. { g e. ( dom m MblFnM S ) | ( ran g e. Fin /\ A. x e. ( ran g \ { .0. } ) ( m ` ( `' g " { x } ) ) e. ( 0 [,) +oo ) ) } |-> ( W gsum ( x e. ( ran f \ { .0. } ) |-> ( ( H ` ( m ` ( `' f " { x } ) ) ) .x. x ) ) ) ) = ( f e. { g e. ( dom M MblFnM S ) | ( ran g e. Fin /\ A. x e. ( ran g \ { .0. } ) ( M ` ( `' g " { x } ) ) e. ( 0 [,) +oo ) ) } |-> ( W gsum ( x e. ( ran f \ { .0. } ) |-> ( ( H ` ( M ` ( `' f " { x } ) ) ) .x. x ) ) ) ) ) |
| 48 |
|
df-sitg |
|- sitg = ( w e. _V , m e. U. ran measures |-> ( f e. { g e. ( dom m MblFnM ( sigaGen ` ( TopOpen ` w ) ) ) | ( ran g e. Fin /\ A. x e. ( ran g \ { ( 0g ` w ) } ) ( m ` ( `' g " { x } ) ) e. ( 0 [,) +oo ) ) } |-> ( w gsum ( x e. ( ran f \ { ( 0g ` w ) } ) |-> ( ( ( RRHom ` ( Scalar ` w ) ) ` ( m ` ( `' f " { x } ) ) ) ( .s ` w ) x ) ) ) ) ) |
| 49 |
|
ovex |
|- ( dom M MblFnM S ) e. _V |
| 50 |
49
|
mptrabex |
|- ( f e. { g e. ( dom M MblFnM S ) | ( ran g e. Fin /\ A. x e. ( ran g \ { .0. } ) ( M ` ( `' g " { x } ) ) e. ( 0 [,) +oo ) ) } |-> ( W gsum ( x e. ( ran f \ { .0. } ) |-> ( ( H ` ( M ` ( `' f " { x } ) ) ) .x. x ) ) ) ) e. _V |
| 51 |
33 47 48 50
|
ovmpo |
|- ( ( W e. _V /\ M e. U. ran measures ) -> ( W sitg M ) = ( f e. { g e. ( dom M MblFnM S ) | ( ran g e. Fin /\ A. x e. ( ran g \ { .0. } ) ( M ` ( `' g " { x } ) ) e. ( 0 [,) +oo ) ) } |-> ( W gsum ( x e. ( ran f \ { .0. } ) |-> ( ( H ` ( M ` ( `' f " { x } ) ) ) .x. x ) ) ) ) ) |
| 52 |
9 8 51
|
syl2anc |
|- ( ph -> ( W sitg M ) = ( f e. { g e. ( dom M MblFnM S ) | ( ran g e. Fin /\ A. x e. ( ran g \ { .0. } ) ( M ` ( `' g " { x } ) ) e. ( 0 [,) +oo ) ) } |-> ( W gsum ( x e. ( ran f \ { .0. } ) |-> ( ( H ` ( M ` ( `' f " { x } ) ) ) .x. x ) ) ) ) ) |