| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sitgval.b |  |-  B = ( Base ` W ) | 
						
							| 2 |  | sitgval.j |  |-  J = ( TopOpen ` W ) | 
						
							| 3 |  | sitgval.s |  |-  S = ( sigaGen ` J ) | 
						
							| 4 |  | sitgval.0 |  |-  .0. = ( 0g ` W ) | 
						
							| 5 |  | sitgval.x |  |-  .x. = ( .s ` W ) | 
						
							| 6 |  | sitgval.h |  |-  H = ( RRHom ` ( Scalar ` W ) ) | 
						
							| 7 |  | sitgval.1 |  |-  ( ph -> W e. V ) | 
						
							| 8 |  | sitgval.2 |  |-  ( ph -> M e. U. ran measures ) | 
						
							| 9 | 7 | elexd |  |-  ( ph -> W e. _V ) | 
						
							| 10 |  | 2fveq3 |  |-  ( w = W -> ( sigaGen ` ( TopOpen ` w ) ) = ( sigaGen ` ( TopOpen ` W ) ) ) | 
						
							| 11 | 2 | fveq2i |  |-  ( sigaGen ` J ) = ( sigaGen ` ( TopOpen ` W ) ) | 
						
							| 12 | 3 11 | eqtri |  |-  S = ( sigaGen ` ( TopOpen ` W ) ) | 
						
							| 13 | 10 12 | eqtr4di |  |-  ( w = W -> ( sigaGen ` ( TopOpen ` w ) ) = S ) | 
						
							| 14 | 13 | oveq2d |  |-  ( w = W -> ( dom m MblFnM ( sigaGen ` ( TopOpen ` w ) ) ) = ( dom m MblFnM S ) ) | 
						
							| 15 |  | fveq2 |  |-  ( w = W -> ( 0g ` w ) = ( 0g ` W ) ) | 
						
							| 16 | 15 4 | eqtr4di |  |-  ( w = W -> ( 0g ` w ) = .0. ) | 
						
							| 17 | 16 | sneqd |  |-  ( w = W -> { ( 0g ` w ) } = { .0. } ) | 
						
							| 18 | 17 | difeq2d |  |-  ( w = W -> ( ran g \ { ( 0g ` w ) } ) = ( ran g \ { .0. } ) ) | 
						
							| 19 | 18 | raleqdv |  |-  ( w = W -> ( A. x e. ( ran g \ { ( 0g ` w ) } ) ( m ` ( `' g " { x } ) ) e. ( 0 [,) +oo ) <-> A. x e. ( ran g \ { .0. } ) ( m ` ( `' g " { x } ) ) e. ( 0 [,) +oo ) ) ) | 
						
							| 20 | 19 | anbi2d |  |-  ( w = W -> ( ( ran g e. Fin /\ A. x e. ( ran g \ { ( 0g ` w ) } ) ( m ` ( `' g " { x } ) ) e. ( 0 [,) +oo ) ) <-> ( ran g e. Fin /\ A. x e. ( ran g \ { .0. } ) ( m ` ( `' g " { x } ) ) e. ( 0 [,) +oo ) ) ) ) | 
						
							| 21 | 14 20 | rabeqbidv |  |-  ( w = W -> { g e. ( dom m MblFnM ( sigaGen ` ( TopOpen ` w ) ) ) | ( ran g e. Fin /\ A. x e. ( ran g \ { ( 0g ` w ) } ) ( m ` ( `' g " { x } ) ) e. ( 0 [,) +oo ) ) } = { g e. ( dom m MblFnM S ) | ( ran g e. Fin /\ A. x e. ( ran g \ { .0. } ) ( m ` ( `' g " { x } ) ) e. ( 0 [,) +oo ) ) } ) | 
						
							| 22 |  | id |  |-  ( w = W -> w = W ) | 
						
							| 23 | 17 | difeq2d |  |-  ( w = W -> ( ran f \ { ( 0g ` w ) } ) = ( ran f \ { .0. } ) ) | 
						
							| 24 |  | fveq2 |  |-  ( w = W -> ( .s ` w ) = ( .s ` W ) ) | 
						
							| 25 | 24 5 | eqtr4di |  |-  ( w = W -> ( .s ` w ) = .x. ) | 
						
							| 26 |  | 2fveq3 |  |-  ( w = W -> ( RRHom ` ( Scalar ` w ) ) = ( RRHom ` ( Scalar ` W ) ) ) | 
						
							| 27 | 26 6 | eqtr4di |  |-  ( w = W -> ( RRHom ` ( Scalar ` w ) ) = H ) | 
						
							| 28 | 27 | fveq1d |  |-  ( w = W -> ( ( RRHom ` ( Scalar ` w ) ) ` ( m ` ( `' f " { x } ) ) ) = ( H ` ( m ` ( `' f " { x } ) ) ) ) | 
						
							| 29 |  | eqidd |  |-  ( w = W -> x = x ) | 
						
							| 30 | 25 28 29 | oveq123d |  |-  ( w = W -> ( ( ( RRHom ` ( Scalar ` w ) ) ` ( m ` ( `' f " { x } ) ) ) ( .s ` w ) x ) = ( ( H ` ( m ` ( `' f " { x } ) ) ) .x. x ) ) | 
						
							| 31 | 23 30 | mpteq12dv |  |-  ( w = W -> ( x e. ( ran f \ { ( 0g ` w ) } ) |-> ( ( ( RRHom ` ( Scalar ` w ) ) ` ( m ` ( `' f " { x } ) ) ) ( .s ` w ) x ) ) = ( x e. ( ran f \ { .0. } ) |-> ( ( H ` ( m ` ( `' f " { x } ) ) ) .x. x ) ) ) | 
						
							| 32 | 22 31 | oveq12d |  |-  ( w = W -> ( w gsum ( x e. ( ran f \ { ( 0g ` w ) } ) |-> ( ( ( RRHom ` ( Scalar ` w ) ) ` ( m ` ( `' f " { x } ) ) ) ( .s ` w ) x ) ) ) = ( W gsum ( x e. ( ran f \ { .0. } ) |-> ( ( H ` ( m ` ( `' f " { x } ) ) ) .x. x ) ) ) ) | 
						
							| 33 | 21 32 | mpteq12dv |  |-  ( w = W -> ( f e. { g e. ( dom m MblFnM ( sigaGen ` ( TopOpen ` w ) ) ) | ( ran g e. Fin /\ A. x e. ( ran g \ { ( 0g ` w ) } ) ( m ` ( `' g " { x } ) ) e. ( 0 [,) +oo ) ) } |-> ( w gsum ( x e. ( ran f \ { ( 0g ` w ) } ) |-> ( ( ( RRHom ` ( Scalar ` w ) ) ` ( m ` ( `' f " { x } ) ) ) ( .s ` w ) x ) ) ) ) = ( f e. { g e. ( dom m MblFnM S ) | ( ran g e. Fin /\ A. x e. ( ran g \ { .0. } ) ( m ` ( `' g " { x } ) ) e. ( 0 [,) +oo ) ) } |-> ( W gsum ( x e. ( ran f \ { .0. } ) |-> ( ( H ` ( m ` ( `' f " { x } ) ) ) .x. x ) ) ) ) ) | 
						
							| 34 |  | dmeq |  |-  ( m = M -> dom m = dom M ) | 
						
							| 35 | 34 | oveq1d |  |-  ( m = M -> ( dom m MblFnM S ) = ( dom M MblFnM S ) ) | 
						
							| 36 |  | fveq1 |  |-  ( m = M -> ( m ` ( `' g " { x } ) ) = ( M ` ( `' g " { x } ) ) ) | 
						
							| 37 | 36 | eleq1d |  |-  ( m = M -> ( ( m ` ( `' g " { x } ) ) e. ( 0 [,) +oo ) <-> ( M ` ( `' g " { x } ) ) e. ( 0 [,) +oo ) ) ) | 
						
							| 38 | 37 | ralbidv |  |-  ( m = M -> ( A. x e. ( ran g \ { .0. } ) ( m ` ( `' g " { x } ) ) e. ( 0 [,) +oo ) <-> A. x e. ( ran g \ { .0. } ) ( M ` ( `' g " { x } ) ) e. ( 0 [,) +oo ) ) ) | 
						
							| 39 | 38 | anbi2d |  |-  ( m = M -> ( ( ran g e. Fin /\ A. x e. ( ran g \ { .0. } ) ( m ` ( `' g " { x } ) ) e. ( 0 [,) +oo ) ) <-> ( ran g e. Fin /\ A. x e. ( ran g \ { .0. } ) ( M ` ( `' g " { x } ) ) e. ( 0 [,) +oo ) ) ) ) | 
						
							| 40 | 35 39 | rabeqbidv |  |-  ( m = M -> { g e. ( dom m MblFnM S ) | ( ran g e. Fin /\ A. x e. ( ran g \ { .0. } ) ( m ` ( `' g " { x } ) ) e. ( 0 [,) +oo ) ) } = { g e. ( dom M MblFnM S ) | ( ran g e. Fin /\ A. x e. ( ran g \ { .0. } ) ( M ` ( `' g " { x } ) ) e. ( 0 [,) +oo ) ) } ) | 
						
							| 41 |  | simpl |  |-  ( ( m = M /\ x e. ( ran f \ { .0. } ) ) -> m = M ) | 
						
							| 42 | 41 | fveq1d |  |-  ( ( m = M /\ x e. ( ran f \ { .0. } ) ) -> ( m ` ( `' f " { x } ) ) = ( M ` ( `' f " { x } ) ) ) | 
						
							| 43 | 42 | fveq2d |  |-  ( ( m = M /\ x e. ( ran f \ { .0. } ) ) -> ( H ` ( m ` ( `' f " { x } ) ) ) = ( H ` ( M ` ( `' f " { x } ) ) ) ) | 
						
							| 44 | 43 | oveq1d |  |-  ( ( m = M /\ x e. ( ran f \ { .0. } ) ) -> ( ( H ` ( m ` ( `' f " { x } ) ) ) .x. x ) = ( ( H ` ( M ` ( `' f " { x } ) ) ) .x. x ) ) | 
						
							| 45 | 44 | mpteq2dva |  |-  ( m = M -> ( x e. ( ran f \ { .0. } ) |-> ( ( H ` ( m ` ( `' f " { x } ) ) ) .x. x ) ) = ( x e. ( ran f \ { .0. } ) |-> ( ( H ` ( M ` ( `' f " { x } ) ) ) .x. x ) ) ) | 
						
							| 46 | 45 | oveq2d |  |-  ( m = M -> ( W gsum ( x e. ( ran f \ { .0. } ) |-> ( ( H ` ( m ` ( `' f " { x } ) ) ) .x. x ) ) ) = ( W gsum ( x e. ( ran f \ { .0. } ) |-> ( ( H ` ( M ` ( `' f " { x } ) ) ) .x. x ) ) ) ) | 
						
							| 47 | 40 46 | mpteq12dv |  |-  ( m = M -> ( f e. { g e. ( dom m MblFnM S ) | ( ran g e. Fin /\ A. x e. ( ran g \ { .0. } ) ( m ` ( `' g " { x } ) ) e. ( 0 [,) +oo ) ) } |-> ( W gsum ( x e. ( ran f \ { .0. } ) |-> ( ( H ` ( m ` ( `' f " { x } ) ) ) .x. x ) ) ) ) = ( f e. { g e. ( dom M MblFnM S ) | ( ran g e. Fin /\ A. x e. ( ran g \ { .0. } ) ( M ` ( `' g " { x } ) ) e. ( 0 [,) +oo ) ) } |-> ( W gsum ( x e. ( ran f \ { .0. } ) |-> ( ( H ` ( M ` ( `' f " { x } ) ) ) .x. x ) ) ) ) ) | 
						
							| 48 |  | df-sitg |  |-  sitg = ( w e. _V , m e. U. ran measures |-> ( f e. { g e. ( dom m MblFnM ( sigaGen ` ( TopOpen ` w ) ) ) | ( ran g e. Fin /\ A. x e. ( ran g \ { ( 0g ` w ) } ) ( m ` ( `' g " { x } ) ) e. ( 0 [,) +oo ) ) } |-> ( w gsum ( x e. ( ran f \ { ( 0g ` w ) } ) |-> ( ( ( RRHom ` ( Scalar ` w ) ) ` ( m ` ( `' f " { x } ) ) ) ( .s ` w ) x ) ) ) ) ) | 
						
							| 49 |  | ovex |  |-  ( dom M MblFnM S ) e. _V | 
						
							| 50 | 49 | mptrabex |  |-  ( f e. { g e. ( dom M MblFnM S ) | ( ran g e. Fin /\ A. x e. ( ran g \ { .0. } ) ( M ` ( `' g " { x } ) ) e. ( 0 [,) +oo ) ) } |-> ( W gsum ( x e. ( ran f \ { .0. } ) |-> ( ( H ` ( M ` ( `' f " { x } ) ) ) .x. x ) ) ) ) e. _V | 
						
							| 51 | 33 47 48 50 | ovmpo |  |-  ( ( W e. _V /\ M e. U. ran measures ) -> ( W sitg M ) = ( f e. { g e. ( dom M MblFnM S ) | ( ran g e. Fin /\ A. x e. ( ran g \ { .0. } ) ( M ` ( `' g " { x } ) ) e. ( 0 [,) +oo ) ) } |-> ( W gsum ( x e. ( ran f \ { .0. } ) |-> ( ( H ` ( M ` ( `' f " { x } ) ) ) .x. x ) ) ) ) ) | 
						
							| 52 | 9 8 51 | syl2anc |  |-  ( ph -> ( W sitg M ) = ( f e. { g e. ( dom M MblFnM S ) | ( ran g e. Fin /\ A. x e. ( ran g \ { .0. } ) ( M ` ( `' g " { x } ) ) e. ( 0 [,) +oo ) ) } |-> ( W gsum ( x e. ( ran f \ { .0. } ) |-> ( ( H ` ( M ` ( `' f " { x } ) ) ) .x. x ) ) ) ) ) |