Description: Define the integral of simple functions from a measurable space dom m to a generic space w equipped with the right scalar product. w will later be required to be a Banach space.
These simple functions are required to take finitely many different values: this is expressed by ran g e. Fin in the definition.
Moreover, for each x , the pre-image (`' g " { x } ) is requested to be measurable, of finite measure.
In this definition, ( sigaGen `( TopOpenw ) ) is the Borel sigma-algebra on w , and the functions g range over the measurable functions over that Borel algebra.
Definition 2.4.1 of Bogachev p. 118. (Contributed by Thierry Arnoux, 21-Oct-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-sitg | |- sitg = ( w e. _V , m e. U. ran measures |-> ( f e. { g e. ( dom m MblFnM ( sigaGen ` ( TopOpen ` w ) ) ) | ( ran g e. Fin /\ A. x e. ( ran g \ { ( 0g ` w ) } ) ( m ` ( `' g " { x } ) ) e. ( 0 [,) +oo ) ) } |-> ( w gsum ( x e. ( ran f \ { ( 0g ` w ) } ) |-> ( ( ( RRHom ` ( Scalar ` w ) ) ` ( m ` ( `' f " { x } ) ) ) ( .s ` w ) x ) ) ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 0 | csitg | |- sitg | |
| 1 | vw | |- w | |
| 2 | cvv | |- _V | |
| 3 | vm | |- m | |
| 4 | cmeas | |- measures | |
| 5 | 4 | crn | |- ran measures | 
| 6 | 5 | cuni | |- U. ran measures | 
| 7 | vf | |- f | |
| 8 | vg | |- g | |
| 9 | 3 | cv | |- m | 
| 10 | 9 | cdm | |- dom m | 
| 11 | cmbfm | |- MblFnM | |
| 12 | csigagen | |- sigaGen | |
| 13 | ctopn | |- TopOpen | |
| 14 | 1 | cv | |- w | 
| 15 | 14 13 | cfv | |- ( TopOpen ` w ) | 
| 16 | 15 12 | cfv | |- ( sigaGen ` ( TopOpen ` w ) ) | 
| 17 | 10 16 11 | co | |- ( dom m MblFnM ( sigaGen ` ( TopOpen ` w ) ) ) | 
| 18 | 8 | cv | |- g | 
| 19 | 18 | crn | |- ran g | 
| 20 | cfn | |- Fin | |
| 21 | 19 20 | wcel | |- ran g e. Fin | 
| 22 | vx | |- x | |
| 23 | c0g | |- 0g | |
| 24 | 14 23 | cfv | |- ( 0g ` w ) | 
| 25 | 24 | csn |  |-  { ( 0g ` w ) } | 
| 26 | 19 25 | cdif |  |-  ( ran g \ { ( 0g ` w ) } ) | 
| 27 | 18 | ccnv | |- `' g | 
| 28 | 22 | cv | |- x | 
| 29 | 28 | csn |  |-  { x } | 
| 30 | 27 29 | cima |  |-  ( `' g " { x } ) | 
| 31 | 30 9 | cfv |  |-  ( m ` ( `' g " { x } ) ) | 
| 32 | cc0 | |- 0 | |
| 33 | cico | |- [,) | |
| 34 | cpnf | |- +oo | |
| 35 | 32 34 33 | co | |- ( 0 [,) +oo ) | 
| 36 | 31 35 | wcel |  |-  ( m ` ( `' g " { x } ) ) e. ( 0 [,) +oo ) | 
| 37 | 36 22 26 | wral |  |-  A. x e. ( ran g \ { ( 0g ` w ) } ) ( m ` ( `' g " { x } ) ) e. ( 0 [,) +oo ) | 
| 38 | 21 37 | wa |  |-  ( ran g e. Fin /\ A. x e. ( ran g \ { ( 0g ` w ) } ) ( m ` ( `' g " { x } ) ) e. ( 0 [,) +oo ) ) | 
| 39 | 38 8 17 | crab |  |-  { g e. ( dom m MblFnM ( sigaGen ` ( TopOpen ` w ) ) ) | ( ran g e. Fin /\ A. x e. ( ran g \ { ( 0g ` w ) } ) ( m ` ( `' g " { x } ) ) e. ( 0 [,) +oo ) ) } | 
| 40 | cgsu | |- gsum | |
| 41 | 7 | cv | |- f | 
| 42 | 41 | crn | |- ran f | 
| 43 | 42 25 | cdif |  |-  ( ran f \ { ( 0g ` w ) } ) | 
| 44 | crrh | |- RRHom | |
| 45 | csca | |- Scalar | |
| 46 | 14 45 | cfv | |- ( Scalar ` w ) | 
| 47 | 46 44 | cfv | |- ( RRHom ` ( Scalar ` w ) ) | 
| 48 | 41 | ccnv | |- `' f | 
| 49 | 48 29 | cima |  |-  ( `' f " { x } ) | 
| 50 | 49 9 | cfv |  |-  ( m ` ( `' f " { x } ) ) | 
| 51 | 50 47 | cfv |  |-  ( ( RRHom ` ( Scalar ` w ) ) ` ( m ` ( `' f " { x } ) ) ) | 
| 52 | cvsca | |- .s | |
| 53 | 14 52 | cfv | |- ( .s ` w ) | 
| 54 | 51 28 53 | co |  |-  ( ( ( RRHom ` ( Scalar ` w ) ) ` ( m ` ( `' f " { x } ) ) ) ( .s ` w ) x ) | 
| 55 | 22 43 54 | cmpt |  |-  ( x e. ( ran f \ { ( 0g ` w ) } ) |-> ( ( ( RRHom ` ( Scalar ` w ) ) ` ( m ` ( `' f " { x } ) ) ) ( .s ` w ) x ) ) | 
| 56 | 14 55 40 | co |  |-  ( w gsum ( x e. ( ran f \ { ( 0g ` w ) } ) |-> ( ( ( RRHom ` ( Scalar ` w ) ) ` ( m ` ( `' f " { x } ) ) ) ( .s ` w ) x ) ) ) | 
| 57 | 7 39 56 | cmpt |  |-  ( f e. { g e. ( dom m MblFnM ( sigaGen ` ( TopOpen ` w ) ) ) | ( ran g e. Fin /\ A. x e. ( ran g \ { ( 0g ` w ) } ) ( m ` ( `' g " { x } ) ) e. ( 0 [,) +oo ) ) } |-> ( w gsum ( x e. ( ran f \ { ( 0g ` w ) } ) |-> ( ( ( RRHom ` ( Scalar ` w ) ) ` ( m ` ( `' f " { x } ) ) ) ( .s ` w ) x ) ) ) ) | 
| 58 | 1 3 2 6 57 | cmpo |  |-  ( w e. _V , m e. U. ran measures |-> ( f e. { g e. ( dom m MblFnM ( sigaGen ` ( TopOpen ` w ) ) ) | ( ran g e. Fin /\ A. x e. ( ran g \ { ( 0g ` w ) } ) ( m ` ( `' g " { x } ) ) e. ( 0 [,) +oo ) ) } |-> ( w gsum ( x e. ( ran f \ { ( 0g ` w ) } ) |-> ( ( ( RRHom ` ( Scalar ` w ) ) ` ( m ` ( `' f " { x } ) ) ) ( .s ` w ) x ) ) ) ) ) | 
| 59 | 0 58 | wceq |  |-  sitg = ( w e. _V , m e. U. ran measures |-> ( f e. { g e. ( dom m MblFnM ( sigaGen ` ( TopOpen ` w ) ) ) | ( ran g e. Fin /\ A. x e. ( ran g \ { ( 0g ` w ) } ) ( m ` ( `' g " { x } ) ) e. ( 0 [,) +oo ) ) } |-> ( w gsum ( x e. ( ran f \ { ( 0g ` w ) } ) |-> ( ( ( RRHom ` ( Scalar ` w ) ) ` ( m ` ( `' f " { x } ) ) ) ( .s ` w ) x ) ) ) ) ) |