| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sitgval.b |  |-  B = ( Base ` W ) | 
						
							| 2 |  | sitgval.j |  |-  J = ( TopOpen ` W ) | 
						
							| 3 |  | sitgval.s |  |-  S = ( sigaGen ` J ) | 
						
							| 4 |  | sitgval.0 |  |-  .0. = ( 0g ` W ) | 
						
							| 5 |  | sitgval.x |  |-  .x. = ( .s ` W ) | 
						
							| 6 |  | sitgval.h |  |-  H = ( RRHom ` ( Scalar ` W ) ) | 
						
							| 7 |  | sitgval.1 |  |-  ( ph -> W e. V ) | 
						
							| 8 |  | sitgval.2 |  |-  ( ph -> M e. U. ran measures ) | 
						
							| 9 | 1 2 3 4 5 6 7 8 | sitgval |  |-  ( ph -> ( W sitg M ) = ( f e. { g e. ( dom M MblFnM S ) | ( ran g e. Fin /\ A. x e. ( ran g \ { .0. } ) ( M ` ( `' g " { x } ) ) e. ( 0 [,) +oo ) ) } |-> ( W gsum ( x e. ( ran f \ { .0. } ) |-> ( ( H ` ( M ` ( `' f " { x } ) ) ) .x. x ) ) ) ) ) | 
						
							| 10 | 9 | dmeqd |  |-  ( ph -> dom ( W sitg M ) = dom ( f e. { g e. ( dom M MblFnM S ) | ( ran g e. Fin /\ A. x e. ( ran g \ { .0. } ) ( M ` ( `' g " { x } ) ) e. ( 0 [,) +oo ) ) } |-> ( W gsum ( x e. ( ran f \ { .0. } ) |-> ( ( H ` ( M ` ( `' f " { x } ) ) ) .x. x ) ) ) ) ) | 
						
							| 11 |  | eqid |  |-  ( f e. { g e. ( dom M MblFnM S ) | ( ran g e. Fin /\ A. x e. ( ran g \ { .0. } ) ( M ` ( `' g " { x } ) ) e. ( 0 [,) +oo ) ) } |-> ( W gsum ( x e. ( ran f \ { .0. } ) |-> ( ( H ` ( M ` ( `' f " { x } ) ) ) .x. x ) ) ) ) = ( f e. { g e. ( dom M MblFnM S ) | ( ran g e. Fin /\ A. x e. ( ran g \ { .0. } ) ( M ` ( `' g " { x } ) ) e. ( 0 [,) +oo ) ) } |-> ( W gsum ( x e. ( ran f \ { .0. } ) |-> ( ( H ` ( M ` ( `' f " { x } ) ) ) .x. x ) ) ) ) | 
						
							| 12 | 11 | dmmpt |  |-  dom ( f e. { g e. ( dom M MblFnM S ) | ( ran g e. Fin /\ A. x e. ( ran g \ { .0. } ) ( M ` ( `' g " { x } ) ) e. ( 0 [,) +oo ) ) } |-> ( W gsum ( x e. ( ran f \ { .0. } ) |-> ( ( H ` ( M ` ( `' f " { x } ) ) ) .x. x ) ) ) ) = { f e. { g e. ( dom M MblFnM S ) | ( ran g e. Fin /\ A. x e. ( ran g \ { .0. } ) ( M ` ( `' g " { x } ) ) e. ( 0 [,) +oo ) ) } | ( W gsum ( x e. ( ran f \ { .0. } ) |-> ( ( H ` ( M ` ( `' f " { x } ) ) ) .x. x ) ) ) e. _V } | 
						
							| 13 | 10 12 | eqtrdi |  |-  ( ph -> dom ( W sitg M ) = { f e. { g e. ( dom M MblFnM S ) | ( ran g e. Fin /\ A. x e. ( ran g \ { .0. } ) ( M ` ( `' g " { x } ) ) e. ( 0 [,) +oo ) ) } | ( W gsum ( x e. ( ran f \ { .0. } ) |-> ( ( H ` ( M ` ( `' f " { x } ) ) ) .x. x ) ) ) e. _V } ) | 
						
							| 14 | 13 | eleq2d |  |-  ( ph -> ( F e. dom ( W sitg M ) <-> F e. { f e. { g e. ( dom M MblFnM S ) | ( ran g e. Fin /\ A. x e. ( ran g \ { .0. } ) ( M ` ( `' g " { x } ) ) e. ( 0 [,) +oo ) ) } | ( W gsum ( x e. ( ran f \ { .0. } ) |-> ( ( H ` ( M ` ( `' f " { x } ) ) ) .x. x ) ) ) e. _V } ) ) | 
						
							| 15 |  | rneq |  |-  ( f = F -> ran f = ran F ) | 
						
							| 16 | 15 | difeq1d |  |-  ( f = F -> ( ran f \ { .0. } ) = ( ran F \ { .0. } ) ) | 
						
							| 17 |  | cnveq |  |-  ( f = F -> `' f = `' F ) | 
						
							| 18 | 17 | imaeq1d |  |-  ( f = F -> ( `' f " { x } ) = ( `' F " { x } ) ) | 
						
							| 19 | 18 | fveq2d |  |-  ( f = F -> ( M ` ( `' f " { x } ) ) = ( M ` ( `' F " { x } ) ) ) | 
						
							| 20 | 19 | fveq2d |  |-  ( f = F -> ( H ` ( M ` ( `' f " { x } ) ) ) = ( H ` ( M ` ( `' F " { x } ) ) ) ) | 
						
							| 21 | 20 | oveq1d |  |-  ( f = F -> ( ( H ` ( M ` ( `' f " { x } ) ) ) .x. x ) = ( ( H ` ( M ` ( `' F " { x } ) ) ) .x. x ) ) | 
						
							| 22 | 16 21 | mpteq12dv |  |-  ( f = F -> ( x e. ( ran f \ { .0. } ) |-> ( ( H ` ( M ` ( `' f " { x } ) ) ) .x. x ) ) = ( x e. ( ran F \ { .0. } ) |-> ( ( H ` ( M ` ( `' F " { x } ) ) ) .x. x ) ) ) | 
						
							| 23 | 22 | oveq2d |  |-  ( f = F -> ( W gsum ( x e. ( ran f \ { .0. } ) |-> ( ( H ` ( M ` ( `' f " { x } ) ) ) .x. x ) ) ) = ( W gsum ( x e. ( ran F \ { .0. } ) |-> ( ( H ` ( M ` ( `' F " { x } ) ) ) .x. x ) ) ) ) | 
						
							| 24 | 23 | eleq1d |  |-  ( f = F -> ( ( W gsum ( x e. ( ran f \ { .0. } ) |-> ( ( H ` ( M ` ( `' f " { x } ) ) ) .x. x ) ) ) e. _V <-> ( W gsum ( x e. ( ran F \ { .0. } ) |-> ( ( H ` ( M ` ( `' F " { x } ) ) ) .x. x ) ) ) e. _V ) ) | 
						
							| 25 | 24 | elrab |  |-  ( F e. { f e. { g e. ( dom M MblFnM S ) | ( ran g e. Fin /\ A. x e. ( ran g \ { .0. } ) ( M ` ( `' g " { x } ) ) e. ( 0 [,) +oo ) ) } | ( W gsum ( x e. ( ran f \ { .0. } ) |-> ( ( H ` ( M ` ( `' f " { x } ) ) ) .x. x ) ) ) e. _V } <-> ( F e. { g e. ( dom M MblFnM S ) | ( ran g e. Fin /\ A. x e. ( ran g \ { .0. } ) ( M ` ( `' g " { x } ) ) e. ( 0 [,) +oo ) ) } /\ ( W gsum ( x e. ( ran F \ { .0. } ) |-> ( ( H ` ( M ` ( `' F " { x } ) ) ) .x. x ) ) ) e. _V ) ) | 
						
							| 26 | 14 25 | bitrdi |  |-  ( ph -> ( F e. dom ( W sitg M ) <-> ( F e. { g e. ( dom M MblFnM S ) | ( ran g e. Fin /\ A. x e. ( ran g \ { .0. } ) ( M ` ( `' g " { x } ) ) e. ( 0 [,) +oo ) ) } /\ ( W gsum ( x e. ( ran F \ { .0. } ) |-> ( ( H ` ( M ` ( `' F " { x } ) ) ) .x. x ) ) ) e. _V ) ) ) | 
						
							| 27 |  | ovex |  |-  ( W gsum ( x e. ( ran F \ { .0. } ) |-> ( ( H ` ( M ` ( `' F " { x } ) ) ) .x. x ) ) ) e. _V | 
						
							| 28 | 27 | biantru |  |-  ( F e. { g e. ( dom M MblFnM S ) | ( ran g e. Fin /\ A. x e. ( ran g \ { .0. } ) ( M ` ( `' g " { x } ) ) e. ( 0 [,) +oo ) ) } <-> ( F e. { g e. ( dom M MblFnM S ) | ( ran g e. Fin /\ A. x e. ( ran g \ { .0. } ) ( M ` ( `' g " { x } ) ) e. ( 0 [,) +oo ) ) } /\ ( W gsum ( x e. ( ran F \ { .0. } ) |-> ( ( H ` ( M ` ( `' F " { x } ) ) ) .x. x ) ) ) e. _V ) ) | 
						
							| 29 | 26 28 | bitr4di |  |-  ( ph -> ( F e. dom ( W sitg M ) <-> F e. { g e. ( dom M MblFnM S ) | ( ran g e. Fin /\ A. x e. ( ran g \ { .0. } ) ( M ` ( `' g " { x } ) ) e. ( 0 [,) +oo ) ) } ) ) | 
						
							| 30 |  | rneq |  |-  ( g = F -> ran g = ran F ) | 
						
							| 31 | 30 | eleq1d |  |-  ( g = F -> ( ran g e. Fin <-> ran F e. Fin ) ) | 
						
							| 32 | 30 | difeq1d |  |-  ( g = F -> ( ran g \ { .0. } ) = ( ran F \ { .0. } ) ) | 
						
							| 33 |  | cnveq |  |-  ( g = F -> `' g = `' F ) | 
						
							| 34 | 33 | imaeq1d |  |-  ( g = F -> ( `' g " { x } ) = ( `' F " { x } ) ) | 
						
							| 35 | 34 | fveq2d |  |-  ( g = F -> ( M ` ( `' g " { x } ) ) = ( M ` ( `' F " { x } ) ) ) | 
						
							| 36 | 35 | eleq1d |  |-  ( g = F -> ( ( M ` ( `' g " { x } ) ) e. ( 0 [,) +oo ) <-> ( M ` ( `' F " { x } ) ) e. ( 0 [,) +oo ) ) ) | 
						
							| 37 | 32 36 | raleqbidv |  |-  ( g = F -> ( A. x e. ( ran g \ { .0. } ) ( M ` ( `' g " { x } ) ) e. ( 0 [,) +oo ) <-> A. x e. ( ran F \ { .0. } ) ( M ` ( `' F " { x } ) ) e. ( 0 [,) +oo ) ) ) | 
						
							| 38 | 31 37 | anbi12d |  |-  ( g = F -> ( ( ran g e. Fin /\ A. x e. ( ran g \ { .0. } ) ( M ` ( `' g " { x } ) ) e. ( 0 [,) +oo ) ) <-> ( ran F e. Fin /\ A. x e. ( ran F \ { .0. } ) ( M ` ( `' F " { x } ) ) e. ( 0 [,) +oo ) ) ) ) | 
						
							| 39 | 38 | elrab |  |-  ( F e. { g e. ( dom M MblFnM S ) | ( ran g e. Fin /\ A. x e. ( ran g \ { .0. } ) ( M ` ( `' g " { x } ) ) e. ( 0 [,) +oo ) ) } <-> ( F e. ( dom M MblFnM S ) /\ ( ran F e. Fin /\ A. x e. ( ran F \ { .0. } ) ( M ` ( `' F " { x } ) ) e. ( 0 [,) +oo ) ) ) ) | 
						
							| 40 | 29 39 | bitrdi |  |-  ( ph -> ( F e. dom ( W sitg M ) <-> ( F e. ( dom M MblFnM S ) /\ ( ran F e. Fin /\ A. x e. ( ran F \ { .0. } ) ( M ` ( `' F " { x } ) ) e. ( 0 [,) +oo ) ) ) ) ) | 
						
							| 41 |  | 3anass |  |-  ( ( F e. ( dom M MblFnM S ) /\ ran F e. Fin /\ A. x e. ( ran F \ { .0. } ) ( M ` ( `' F " { x } ) ) e. ( 0 [,) +oo ) ) <-> ( F e. ( dom M MblFnM S ) /\ ( ran F e. Fin /\ A. x e. ( ran F \ { .0. } ) ( M ` ( `' F " { x } ) ) e. ( 0 [,) +oo ) ) ) ) | 
						
							| 42 | 40 41 | bitr4di |  |-  ( ph -> ( F e. dom ( W sitg M ) <-> ( F e. ( dom M MblFnM S ) /\ ran F e. Fin /\ A. x e. ( ran F \ { .0. } ) ( M ` ( `' F " { x } ) ) e. ( 0 [,) +oo ) ) ) ) |