Metamath Proof Explorer


Theorem issibf

Description: The predicate " F is a simple function" relative to the Bochner integral. (Contributed by Thierry Arnoux, 19-Feb-2018)

Ref Expression
Hypotheses sitgval.b โŠขB=BaseW
sitgval.j โŠขJ=TopOpenโกW
sitgval.s โŠขS=๐›”โกJ
sitgval.0 โŠข0ห™=0W
sitgval.x โŠขยทห™=โ‹…W
sitgval.h โŠขH=โ„HomโกScalarโกW
sitgval.1 โŠขฯ†โ†’WโˆˆV
sitgval.2 โŠขฯ†โ†’Mโˆˆโ‹ƒranโกmeasures
Assertion issibf โŠขฯ†โ†’Fโˆˆโ„‘MWโ†”FโˆˆdomโกMMblFnฮผSโˆงranโกFโˆˆFinโˆงโˆ€xโˆˆranโกFโˆ–0ห™MโกF-1xโˆˆ0+โˆž

Proof

Step Hyp Ref Expression
1 sitgval.b โŠขB=BaseW
2 sitgval.j โŠขJ=TopOpenโกW
3 sitgval.s โŠขS=๐›”โกJ
4 sitgval.0 โŠข0ห™=0W
5 sitgval.x โŠขยทห™=โ‹…W
6 sitgval.h โŠขH=โ„HomโกScalarโกW
7 sitgval.1 โŠขฯ†โ†’WโˆˆV
8 sitgval.2 โŠขฯ†โ†’Mโˆˆโ‹ƒranโกmeasures
9 1 2 3 4 5 6 7 8 sitgval โŠขฯ†โ†’WsitgM=fโˆˆgโˆˆdomโกMMblFnฮผS|ranโกgโˆˆFinโˆงโˆ€xโˆˆranโกgโˆ–0ห™Mโกg-1xโˆˆ0+โˆžโŸผโˆ‘Wxโˆˆranโกfโˆ–0ห™HโกMโกf-1xยทห™x
10 9 dmeqd โŠขฯ†โ†’โ„‘MW=domโกfโˆˆgโˆˆdomโกMMblFnฮผS|ranโกgโˆˆFinโˆงโˆ€xโˆˆranโกgโˆ–0ห™Mโกg-1xโˆˆ0+โˆžโŸผโˆ‘Wxโˆˆranโกfโˆ–0ห™HโกMโกf-1xยทห™x
11 eqid โŠขfโˆˆgโˆˆdomโกMMblFnฮผS|ranโกgโˆˆFinโˆงโˆ€xโˆˆranโกgโˆ–0ห™Mโกg-1xโˆˆ0+โˆžโŸผโˆ‘Wxโˆˆranโกfโˆ–0ห™HโกMโกf-1xยทห™x=fโˆˆgโˆˆdomโกMMblFnฮผS|ranโกgโˆˆFinโˆงโˆ€xโˆˆranโกgโˆ–0ห™Mโกg-1xโˆˆ0+โˆžโŸผโˆ‘Wxโˆˆranโกfโˆ–0ห™HโกMโกf-1xยทห™x
12 11 dmmpt โŠขdomโกfโˆˆgโˆˆdomโกMMblFnฮผS|ranโกgโˆˆFinโˆงโˆ€xโˆˆranโกgโˆ–0ห™Mโกg-1xโˆˆ0+โˆžโŸผโˆ‘Wxโˆˆranโกfโˆ–0ห™HโกMโกf-1xยทห™x=fโˆˆgโˆˆdomโกMMblFnฮผS|ranโกgโˆˆFinโˆงโˆ€xโˆˆranโกgโˆ–0ห™Mโกg-1xโˆˆ0+โˆž|โˆ‘Wxโˆˆranโกfโˆ–0ห™HโกMโกf-1xยทห™xโˆˆV
13 10 12 eqtrdi โŠขฯ†โ†’โ„‘MW=fโˆˆgโˆˆdomโกMMblFnฮผS|ranโกgโˆˆFinโˆงโˆ€xโˆˆranโกgโˆ–0ห™Mโกg-1xโˆˆ0+โˆž|โˆ‘Wxโˆˆranโกfโˆ–0ห™HโกMโกf-1xยทห™xโˆˆV
14 13 eleq2d โŠขฯ†โ†’Fโˆˆโ„‘MWโ†”FโˆˆfโˆˆgโˆˆdomโกMMblFnฮผS|ranโกgโˆˆFinโˆงโˆ€xโˆˆranโกgโˆ–0ห™Mโกg-1xโˆˆ0+โˆž|โˆ‘Wxโˆˆranโกfโˆ–0ห™HโกMโกf-1xยทห™xโˆˆV
15 rneq โŠขf=Fโ†’ranโกf=ranโกF
16 15 difeq1d โŠขf=Fโ†’ranโกfโˆ–0ห™=ranโกFโˆ–0ห™
17 cnveq โŠขf=Fโ†’f-1=F-1
18 17 imaeq1d โŠขf=Fโ†’f-1x=F-1x
19 18 fveq2d โŠขf=Fโ†’Mโกf-1x=MโกF-1x
20 19 fveq2d โŠขf=Fโ†’HโกMโกf-1x=HโกMโกF-1x
21 20 oveq1d โŠขf=Fโ†’HโกMโกf-1xยทห™x=HโกMโกF-1xยทห™x
22 16 21 mpteq12dv โŠขf=Fโ†’xโˆˆranโกfโˆ–0ห™โŸผHโกMโกf-1xยทห™x=xโˆˆranโกFโˆ–0ห™โŸผHโกMโกF-1xยทห™x
23 22 oveq2d โŠขf=Fโ†’โˆ‘Wxโˆˆranโกfโˆ–0ห™HโกMโกf-1xยทห™x=โˆ‘WxโˆˆranโกFโˆ–0ห™HโกMโกF-1xยทห™x
24 23 eleq1d โŠขf=Fโ†’โˆ‘Wxโˆˆranโกfโˆ–0ห™HโกMโกf-1xยทห™xโˆˆVโ†”โˆ‘WxโˆˆranโกFโˆ–0ห™HโกMโกF-1xยทห™xโˆˆV
25 24 elrab โŠขFโˆˆfโˆˆgโˆˆdomโกMMblFnฮผS|ranโกgโˆˆFinโˆงโˆ€xโˆˆranโกgโˆ–0ห™Mโกg-1xโˆˆ0+โˆž|โˆ‘Wxโˆˆranโกfโˆ–0ห™HโกMโกf-1xยทห™xโˆˆVโ†”FโˆˆgโˆˆdomโกMMblFnฮผS|ranโกgโˆˆFinโˆงโˆ€xโˆˆranโกgโˆ–0ห™Mโกg-1xโˆˆ0+โˆžโˆงโˆ‘WxโˆˆranโกFโˆ–0ห™HโกMโกF-1xยทห™xโˆˆV
26 14 25 bitrdi โŠขฯ†โ†’Fโˆˆโ„‘MWโ†”FโˆˆgโˆˆdomโกMMblFnฮผS|ranโกgโˆˆFinโˆงโˆ€xโˆˆranโกgโˆ–0ห™Mโกg-1xโˆˆ0+โˆžโˆงโˆ‘WxโˆˆranโกFโˆ–0ห™HโกMโกF-1xยทห™xโˆˆV
27 ovex โŠขโˆ‘WxโˆˆranโกFโˆ–0ห™HโกMโกF-1xยทห™xโˆˆV
28 27 biantru โŠขFโˆˆgโˆˆdomโกMMblFnฮผS|ranโกgโˆˆFinโˆงโˆ€xโˆˆranโกgโˆ–0ห™Mโกg-1xโˆˆ0+โˆžโ†”FโˆˆgโˆˆdomโกMMblFnฮผS|ranโกgโˆˆFinโˆงโˆ€xโˆˆranโกgโˆ–0ห™Mโกg-1xโˆˆ0+โˆžโˆงโˆ‘WxโˆˆranโกFโˆ–0ห™HโกMโกF-1xยทห™xโˆˆV
29 26 28 bitr4di โŠขฯ†โ†’Fโˆˆโ„‘MWโ†”FโˆˆgโˆˆdomโกMMblFnฮผS|ranโกgโˆˆFinโˆงโˆ€xโˆˆranโกgโˆ–0ห™Mโกg-1xโˆˆ0+โˆž
30 rneq โŠขg=Fโ†’ranโกg=ranโกF
31 30 eleq1d โŠขg=Fโ†’ranโกgโˆˆFinโ†”ranโกFโˆˆFin
32 30 difeq1d โŠขg=Fโ†’ranโกgโˆ–0ห™=ranโกFโˆ–0ห™
33 cnveq โŠขg=Fโ†’g-1=F-1
34 33 imaeq1d โŠขg=Fโ†’g-1x=F-1x
35 34 fveq2d โŠขg=Fโ†’Mโกg-1x=MโกF-1x
36 35 eleq1d โŠขg=Fโ†’Mโกg-1xโˆˆ0+โˆžโ†”MโกF-1xโˆˆ0+โˆž
37 32 36 raleqbidv โŠขg=Fโ†’โˆ€xโˆˆranโกgโˆ–0ห™Mโกg-1xโˆˆ0+โˆžโ†”โˆ€xโˆˆranโกFโˆ–0ห™MโกF-1xโˆˆ0+โˆž
38 31 37 anbi12d โŠขg=Fโ†’ranโกgโˆˆFinโˆงโˆ€xโˆˆranโกgโˆ–0ห™Mโกg-1xโˆˆ0+โˆžโ†”ranโกFโˆˆFinโˆงโˆ€xโˆˆranโกFโˆ–0ห™MโกF-1xโˆˆ0+โˆž
39 38 elrab โŠขFโˆˆgโˆˆdomโกMMblFnฮผS|ranโกgโˆˆFinโˆงโˆ€xโˆˆranโกgโˆ–0ห™Mโกg-1xโˆˆ0+โˆžโ†”FโˆˆdomโกMMblFnฮผSโˆงranโกFโˆˆFinโˆงโˆ€xโˆˆranโกFโˆ–0ห™MโกF-1xโˆˆ0+โˆž
40 29 39 bitrdi โŠขฯ†โ†’Fโˆˆโ„‘MWโ†”FโˆˆdomโกMMblFnฮผSโˆงranโกFโˆˆFinโˆงโˆ€xโˆˆranโกFโˆ–0ห™MโกF-1xโˆˆ0+โˆž
41 3anass โŠขFโˆˆdomโกMMblFnฮผSโˆงranโกFโˆˆFinโˆงโˆ€xโˆˆranโกFโˆ–0ห™MโกF-1xโˆˆ0+โˆžโ†”FโˆˆdomโกMMblFnฮผSโˆงranโกFโˆˆFinโˆงโˆ€xโˆˆranโกFโˆ–0ห™MโกF-1xโˆˆ0+โˆž
42 40 41 bitr4di โŠขฯ†โ†’Fโˆˆโ„‘MWโ†”FโˆˆdomโกMMblFnฮผSโˆงranโกFโˆˆFinโˆงโˆ€xโˆˆranโกFโˆ–0ห™MโกF-1xโˆˆ0+โˆž