Metamath Proof Explorer


Theorem issibf

Description: The predicate " F is a simple function" relative to the Bochner integral. (Contributed by Thierry Arnoux, 19-Feb-2018)

Ref Expression
Hypotheses sitgval.b B = Base W
sitgval.j J = TopOpen W
sitgval.s S = 𝛔 J
sitgval.0 0 ˙ = 0 W
sitgval.x · ˙ = W
sitgval.h H = ℝHom Scalar W
sitgval.1 φ W V
sitgval.2 φ M ran measures
Assertion issibf φ F M W F dom M MblFn μ S ran F Fin x ran F 0 ˙ M F -1 x 0 +∞

Proof

Step Hyp Ref Expression
1 sitgval.b B = Base W
2 sitgval.j J = TopOpen W
3 sitgval.s S = 𝛔 J
4 sitgval.0 0 ˙ = 0 W
5 sitgval.x · ˙ = W
6 sitgval.h H = ℝHom Scalar W
7 sitgval.1 φ W V
8 sitgval.2 φ M ran measures
9 1 2 3 4 5 6 7 8 sitgval φ W sitg M = f g dom M MblFn μ S | ran g Fin x ran g 0 ˙ M g -1 x 0 +∞ W x ran f 0 ˙ H M f -1 x · ˙ x
10 9 dmeqd φ M W = dom f g dom M MblFn μ S | ran g Fin x ran g 0 ˙ M g -1 x 0 +∞ W x ran f 0 ˙ H M f -1 x · ˙ x
11 eqid f g dom M MblFn μ S | ran g Fin x ran g 0 ˙ M g -1 x 0 +∞ W x ran f 0 ˙ H M f -1 x · ˙ x = f g dom M MblFn μ S | ran g Fin x ran g 0 ˙ M g -1 x 0 +∞ W x ran f 0 ˙ H M f -1 x · ˙ x
12 11 dmmpt dom f g dom M MblFn μ S | ran g Fin x ran g 0 ˙ M g -1 x 0 +∞ W x ran f 0 ˙ H M f -1 x · ˙ x = f g dom M MblFn μ S | ran g Fin x ran g 0 ˙ M g -1 x 0 +∞ | W x ran f 0 ˙ H M f -1 x · ˙ x V
13 10 12 syl6eq φ M W = f g dom M MblFn μ S | ran g Fin x ran g 0 ˙ M g -1 x 0 +∞ | W x ran f 0 ˙ H M f -1 x · ˙ x V
14 13 eleq2d φ F M W F f g dom M MblFn μ S | ran g Fin x ran g 0 ˙ M g -1 x 0 +∞ | W x ran f 0 ˙ H M f -1 x · ˙ x V
15 rneq f = F ran f = ran F
16 15 difeq1d f = F ran f 0 ˙ = ran F 0 ˙
17 cnveq f = F f -1 = F -1
18 17 imaeq1d f = F f -1 x = F -1 x
19 18 fveq2d f = F M f -1 x = M F -1 x
20 19 fveq2d f = F H M f -1 x = H M F -1 x
21 20 oveq1d f = F H M f -1 x · ˙ x = H M F -1 x · ˙ x
22 16 21 mpteq12dv f = F x ran f 0 ˙ H M f -1 x · ˙ x = x ran F 0 ˙ H M F -1 x · ˙ x
23 22 oveq2d f = F W x ran f 0 ˙ H M f -1 x · ˙ x = W x ran F 0 ˙ H M F -1 x · ˙ x
24 23 eleq1d f = F W x ran f 0 ˙ H M f -1 x · ˙ x V W x ran F 0 ˙ H M F -1 x · ˙ x V
25 24 elrab F f g dom M MblFn μ S | ran g Fin x ran g 0 ˙ M g -1 x 0 +∞ | W x ran f 0 ˙ H M f -1 x · ˙ x V F g dom M MblFn μ S | ran g Fin x ran g 0 ˙ M g -1 x 0 +∞ W x ran F 0 ˙ H M F -1 x · ˙ x V
26 14 25 syl6bb φ F M W F g dom M MblFn μ S | ran g Fin x ran g 0 ˙ M g -1 x 0 +∞ W x ran F 0 ˙ H M F -1 x · ˙ x V
27 ovex W x ran F 0 ˙ H M F -1 x · ˙ x V
28 27 biantru F g dom M MblFn μ S | ran g Fin x ran g 0 ˙ M g -1 x 0 +∞ F g dom M MblFn μ S | ran g Fin x ran g 0 ˙ M g -1 x 0 +∞ W x ran F 0 ˙ H M F -1 x · ˙ x V
29 26 28 syl6bbr φ F M W F g dom M MblFn μ S | ran g Fin x ran g 0 ˙ M g -1 x 0 +∞
30 rneq g = F ran g = ran F
31 30 eleq1d g = F ran g Fin ran F Fin
32 30 difeq1d g = F ran g 0 ˙ = ran F 0 ˙
33 cnveq g = F g -1 = F -1
34 33 imaeq1d g = F g -1 x = F -1 x
35 34 fveq2d g = F M g -1 x = M F -1 x
36 35 eleq1d g = F M g -1 x 0 +∞ M F -1 x 0 +∞
37 32 36 raleqbidv g = F x ran g 0 ˙ M g -1 x 0 +∞ x ran F 0 ˙ M F -1 x 0 +∞
38 31 37 anbi12d g = F ran g Fin x ran g 0 ˙ M g -1 x 0 +∞ ran F Fin x ran F 0 ˙ M F -1 x 0 +∞
39 38 elrab F g dom M MblFn μ S | ran g Fin x ran g 0 ˙ M g -1 x 0 +∞ F dom M MblFn μ S ran F Fin x ran F 0 ˙ M F -1 x 0 +∞
40 29 39 syl6bb φ F M W F dom M MblFn μ S ran F Fin x ran F 0 ˙ M F -1 x 0 +∞
41 3anass F dom M MblFn μ S ran F Fin x ran F 0 ˙ M F -1 x 0 +∞ F dom M MblFn μ S ran F Fin x ran F 0 ˙ M F -1 x 0 +∞
42 40 41 syl6bbr φ F M W F dom M MblFn μ S ran F Fin x ran F 0 ˙ M F -1 x 0 +∞