Step |
Hyp |
Ref |
Expression |
1 |
|
sitgval.b |
|
2 |
|
sitgval.j |
|
3 |
|
sitgval.s |
|
4 |
|
sitgval.0 |
|
5 |
|
sitgval.x |
|
6 |
|
sitgval.h |
|
7 |
|
sitgval.1 |
|
8 |
|
sitgval.2 |
|
9 |
1 2 3 4 5 6 7 8
|
sitgval |
|
10 |
9
|
dmeqd |
|
11 |
|
eqid |
|
12 |
11
|
dmmpt |
|
13 |
10 12
|
eqtrdi |
|
14 |
13
|
eleq2d |
|
15 |
|
rneq |
|
16 |
15
|
difeq1d |
|
17 |
|
cnveq |
|
18 |
17
|
imaeq1d |
|
19 |
18
|
fveq2d |
|
20 |
19
|
fveq2d |
|
21 |
20
|
oveq1d |
|
22 |
16 21
|
mpteq12dv |
|
23 |
22
|
oveq2d |
|
24 |
23
|
eleq1d |
|
25 |
24
|
elrab |
|
26 |
14 25
|
bitrdi |
|
27 |
|
ovex |
|
28 |
27
|
biantru |
|
29 |
26 28
|
bitr4di |
|
30 |
|
rneq |
|
31 |
30
|
eleq1d |
|
32 |
30
|
difeq1d |
|
33 |
|
cnveq |
|
34 |
33
|
imaeq1d |
|
35 |
34
|
fveq2d |
|
36 |
35
|
eleq1d |
|
37 |
32 36
|
raleqbidv |
|
38 |
31 37
|
anbi12d |
|
39 |
38
|
elrab |
|
40 |
29 39
|
bitrdi |
|
41 |
|
3anass |
|
42 |
40 41
|
bitr4di |
|