Metamath Proof Explorer


Definition df-sitg

Description: Define the integral of simple functions from a measurable space dom m to a generic space w equipped with the right scalar product. w will later be required to be a Banach space.

These simple functions are required to take finitely many different values: this is expressed by ran g e. Fin in the definition.

Moreover, for each x , the pre-image (`' g " { x } ) is requested to be measurable, of finite measure.

In this definition, ( sigaGen `( TopOpenw ) ) is the Borel sigma-algebra on w , and the functions g range over the measurable functions over that Borel algebra.

Definition 2.4.1 of Bogachev p. 118. (Contributed by Thierry Arnoux, 21-Oct-2017)

Ref Expression
Assertion df-sitg sitg=wV,mranmeasuresfgdommMblFnμ𝛔TopOpenw|rangFinxrang0wmg-1x0+∞wxranf0wℝHomScalarwmf-1xwx

Detailed syntax breakdown

Step Hyp Ref Expression
0 csitg classsitg
1 vw setvarw
2 cvv classV
3 vm setvarm
4 cmeas classmeasures
5 4 crn classranmeasures
6 5 cuni classranmeasures
7 vf setvarf
8 vg setvarg
9 3 cv setvarm
10 9 cdm classdomm
11 cmbfm classMblFnμ
12 csigagen class𝛔
13 ctopn classTopOpen
14 1 cv setvarw
15 14 13 cfv classTopOpenw
16 15 12 cfv class𝛔TopOpenw
17 10 16 11 co classdommMblFnμ𝛔TopOpenw
18 8 cv setvarg
19 18 crn classrang
20 cfn classFin
21 19 20 wcel wffrangFin
22 vx setvarx
23 c0g class0𝑔
24 14 23 cfv class0w
25 24 csn class0w
26 19 25 cdif classrang0w
27 18 ccnv classg-1
28 22 cv setvarx
29 28 csn classx
30 27 29 cima classg-1x
31 30 9 cfv classmg-1x
32 cc0 class0
33 cico class.
34 cpnf class+∞
35 32 34 33 co class0+∞
36 31 35 wcel wffmg-1x0+∞
37 36 22 26 wral wffxrang0wmg-1x0+∞
38 21 37 wa wffrangFinxrang0wmg-1x0+∞
39 38 8 17 crab classgdommMblFnμ𝛔TopOpenw|rangFinxrang0wmg-1x0+∞
40 cgsu classΣ𝑔
41 7 cv setvarf
42 41 crn classranf
43 42 25 cdif classranf0w
44 crrh classℝHom
45 csca classScalar
46 14 45 cfv classScalarw
47 46 44 cfv classℝHomScalarw
48 41 ccnv classf-1
49 48 29 cima classf-1x
50 49 9 cfv classmf-1x
51 50 47 cfv classℝHomScalarwmf-1x
52 cvsca class𝑠
53 14 52 cfv classw
54 51 28 53 co classℝHomScalarwmf-1xwx
55 22 43 54 cmpt classxranf0wℝHomScalarwmf-1xwx
56 14 55 40 co classwxranf0wℝHomScalarwmf-1xwx
57 7 39 56 cmpt classfgdommMblFnμ𝛔TopOpenw|rangFinxrang0wmg-1x0+∞wxranf0wℝHomScalarwmf-1xwx
58 1 3 2 6 57 cmpo classwV,mranmeasuresfgdommMblFnμ𝛔TopOpenw|rangFinxrang0wmg-1x0+∞wxranf0wℝHomScalarwmf-1xwx
59 0 58 wceq wffsitg=wV,mranmeasuresfgdommMblFnμ𝛔TopOpenw|rangFinxrang0wmg-1x0+∞wxranf0wℝHomScalarwmf-1xwx