Description: Define the integral of simple functions from a measurable space dom m to a generic space w equipped with the right scalar product. w will later be required to be a Banach space.
These simple functions are required to take finitely many different values: this is expressed by ran g e. Fin in the definition.
Moreover, for each x , the pre-image (`' g " { x } ) is requested to be measurable, of finite measure.
In this definition, ( sigaGen `( TopOpenw ) ) is the Borel sigma-algebra on w , and the functions g range over the measurable functions over that Borel algebra.
Definition 2.4.1 of Bogachev p. 118. (Contributed by Thierry Arnoux, 21-Oct-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | df-sitg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | csitg | |
|
1 | vw | |
|
2 | cvv | |
|
3 | vm | |
|
4 | cmeas | |
|
5 | 4 | crn | |
6 | 5 | cuni | |
7 | vf | |
|
8 | vg | |
|
9 | 3 | cv | |
10 | 9 | cdm | |
11 | cmbfm | |
|
12 | csigagen | |
|
13 | ctopn | |
|
14 | 1 | cv | |
15 | 14 13 | cfv | |
16 | 15 12 | cfv | |
17 | 10 16 11 | co | |
18 | 8 | cv | |
19 | 18 | crn | |
20 | cfn | |
|
21 | 19 20 | wcel | |
22 | vx | |
|
23 | c0g | |
|
24 | 14 23 | cfv | |
25 | 24 | csn | |
26 | 19 25 | cdif | |
27 | 18 | ccnv | |
28 | 22 | cv | |
29 | 28 | csn | |
30 | 27 29 | cima | |
31 | 30 9 | cfv | |
32 | cc0 | |
|
33 | cico | |
|
34 | cpnf | |
|
35 | 32 34 33 | co | |
36 | 31 35 | wcel | |
37 | 36 22 26 | wral | |
38 | 21 37 | wa | |
39 | 38 8 17 | crab | |
40 | cgsu | |
|
41 | 7 | cv | |
42 | 41 | crn | |
43 | 42 25 | cdif | |
44 | crrh | |
|
45 | csca | |
|
46 | 14 45 | cfv | |
47 | 46 44 | cfv | |
48 | 41 | ccnv | |
49 | 48 29 | cima | |
50 | 49 9 | cfv | |
51 | 50 47 | cfv | |
52 | cvsca | |
|
53 | 14 52 | cfv | |
54 | 51 28 53 | co | |
55 | 22 43 54 | cmpt | |
56 | 14 55 40 | co | |
57 | 7 39 56 | cmpt | |
58 | 1 3 2 6 57 | cmpo | |
59 | 0 58 | wceq | |