Metamath Proof Explorer


Theorem sibf0

Description: The constant zero function is a simple function. (Contributed by Thierry Arnoux, 4-Mar-2018)

Ref Expression
Hypotheses sitgval.b โŠขB=BaseW
sitgval.j โŠขJ=TopOpenโกW
sitgval.s โŠขS=๐›”โกJ
sitgval.0 โŠข0ห™=0W
sitgval.x โŠขยทห™=โ‹…W
sitgval.h โŠขH=โ„HomโกScalarโกW
sitgval.1 โŠขฯ†โ†’WโˆˆV
sitgval.2 โŠขฯ†โ†’Mโˆˆโ‹ƒranโกmeasures
sibf0.1 โŠขฯ†โ†’WโˆˆTopSp
sibf0.2 โŠขฯ†โ†’WโˆˆMnd
Assertion sibf0 โŠขฯ†โ†’โ‹ƒdomโกMร—0ห™โˆˆโ„‘MW

Proof

Step Hyp Ref Expression
1 sitgval.b โŠขB=BaseW
2 sitgval.j โŠขJ=TopOpenโกW
3 sitgval.s โŠขS=๐›”โกJ
4 sitgval.0 โŠข0ห™=0W
5 sitgval.x โŠขยทห™=โ‹…W
6 sitgval.h โŠขH=โ„HomโกScalarโกW
7 sitgval.1 โŠขฯ†โ†’WโˆˆV
8 sitgval.2 โŠขฯ†โ†’Mโˆˆโ‹ƒranโกmeasures
9 sibf0.1 โŠขฯ†โ†’WโˆˆTopSp
10 sibf0.2 โŠขฯ†โ†’WโˆˆMnd
11 dmmeas โŠขMโˆˆโ‹ƒranโกmeasuresโ†’domโกMโˆˆโ‹ƒranโกsigAlgebra
12 8 11 syl โŠขฯ†โ†’domโกMโˆˆโ‹ƒranโกsigAlgebra
13 2 fvexi โŠขJโˆˆV
14 13 a1i โŠขฯ†โ†’JโˆˆV
15 14 sgsiga โŠขฯ†โ†’๐›”โกJโˆˆโ‹ƒranโกsigAlgebra
16 3 15 eqeltrid โŠขฯ†โ†’Sโˆˆโ‹ƒranโกsigAlgebra
17 fconstmpt โŠขโ‹ƒdomโกMร—0ห™=xโˆˆโ‹ƒdomโกMโŸผ0ห™
18 17 a1i โŠขฯ†โ†’โ‹ƒdomโกMร—0ห™=xโˆˆโ‹ƒdomโกMโŸผ0ห™
19 1 4 mndidcl โŠขWโˆˆMndโ†’0ห™โˆˆB
20 10 19 syl โŠขฯ†โ†’0ห™โˆˆB
21 1 2 tpsuni โŠขWโˆˆTopSpโ†’B=โ‹ƒJ
22 9 21 syl โŠขฯ†โ†’B=โ‹ƒJ
23 3 unieqi โŠขโ‹ƒS=โ‹ƒ๐›”โกJ
24 unisg โŠขJโˆˆVโ†’โ‹ƒ๐›”โกJ=โ‹ƒJ
25 13 24 mp1i โŠขฯ†โ†’โ‹ƒ๐›”โกJ=โ‹ƒJ
26 23 25 eqtrid โŠขฯ†โ†’โ‹ƒS=โ‹ƒJ
27 22 26 eqtr4d โŠขฯ†โ†’B=โ‹ƒS
28 20 27 eleqtrd โŠขฯ†โ†’0ห™โˆˆโ‹ƒS
29 12 16 18 28 mbfmcst โŠขฯ†โ†’โ‹ƒdomโกMร—0ห™โˆˆdomโกMMblFnฮผS
30 xpeq1 โŠขโ‹ƒdomโกM=โˆ…โ†’โ‹ƒdomโกMร—0ห™=โˆ…ร—0ห™
31 0xp โŠขโˆ…ร—0ห™=โˆ…
32 30 31 eqtrdi โŠขโ‹ƒdomโกM=โˆ…โ†’โ‹ƒdomโกMร—0ห™=โˆ…
33 32 rneqd โŠขโ‹ƒdomโกM=โˆ…โ†’ranโกโ‹ƒdomโกMร—0ห™=ranโกโˆ…
34 rn0 โŠขranโกโˆ…=โˆ…
35 33 34 eqtrdi โŠขโ‹ƒdomโกM=โˆ…โ†’ranโกโ‹ƒdomโกMร—0ห™=โˆ…
36 0fin โŠขโˆ…โˆˆFin
37 35 36 eqeltrdi โŠขโ‹ƒdomโกM=โˆ…โ†’ranโกโ‹ƒdomโกMร—0ห™โˆˆFin
38 rnxp โŠขโ‹ƒdomโกMโ‰ โˆ…โ†’ranโกโ‹ƒdomโกMร—0ห™=0ห™
39 snfi โŠข0ห™โˆˆFin
40 38 39 eqeltrdi โŠขโ‹ƒdomโกMโ‰ โˆ…โ†’ranโกโ‹ƒdomโกMร—0ห™โˆˆFin
41 37 40 pm2.61ine โŠขranโกโ‹ƒdomโกMร—0ห™โˆˆFin
42 41 a1i โŠขฯ†โ†’ranโกโ‹ƒdomโกMร—0ห™โˆˆFin
43 noel โŠขยฌxโˆˆโˆ…
44 35 difeq1d โŠขโ‹ƒdomโกM=โˆ…โ†’ranโกโ‹ƒdomโกMร—0ห™โˆ–0ห™=โˆ…โˆ–0ห™
45 0dif โŠขโˆ…โˆ–0ห™=โˆ…
46 44 45 eqtrdi โŠขโ‹ƒdomโกM=โˆ…โ†’ranโกโ‹ƒdomโกMร—0ห™โˆ–0ห™=โˆ…
47 38 difeq1d โŠขโ‹ƒdomโกMโ‰ โˆ…โ†’ranโกโ‹ƒdomโกMร—0ห™โˆ–0ห™=0ห™โˆ–0ห™
48 difid โŠข0ห™โˆ–0ห™=โˆ…
49 47 48 eqtrdi โŠขโ‹ƒdomโกMโ‰ โˆ…โ†’ranโกโ‹ƒdomโกMร—0ห™โˆ–0ห™=โˆ…
50 46 49 pm2.61ine โŠขranโกโ‹ƒdomโกMร—0ห™โˆ–0ห™=โˆ…
51 50 eleq2i โŠขxโˆˆranโกโ‹ƒdomโกMร—0ห™โˆ–0ห™โ†”xโˆˆโˆ…
52 43 51 mtbir โŠขยฌxโˆˆranโกโ‹ƒdomโกMร—0ห™โˆ–0ห™
53 52 pm2.21i โŠขxโˆˆranโกโ‹ƒdomโกMร—0ห™โˆ–0ห™โ†’Mโกโ‹ƒdomโกMร—0ห™-1xโˆˆ0+โˆž
54 53 adantl โŠขฯ†โˆงxโˆˆranโกโ‹ƒdomโกMร—0ห™โˆ–0ห™โ†’Mโกโ‹ƒdomโกMร—0ห™-1xโˆˆ0+โˆž
55 54 ralrimiva โŠขฯ†โ†’โˆ€xโˆˆranโกโ‹ƒdomโกMร—0ห™โˆ–0ห™Mโกโ‹ƒdomโกMร—0ห™-1xโˆˆ0+โˆž
56 1 2 3 4 5 6 7 8 issibf โŠขฯ†โ†’โ‹ƒdomโกMร—0ห™โˆˆโ„‘MWโ†”โ‹ƒdomโกMร—0ห™โˆˆdomโกMMblFnฮผSโˆงranโกโ‹ƒdomโกMร—0ห™โˆˆFinโˆงโˆ€xโˆˆranโกโ‹ƒdomโกMร—0ห™โˆ–0ห™Mโกโ‹ƒdomโกMร—0ห™-1xโˆˆ0+โˆž
57 29 42 55 56 mpbir3and โŠขฯ†โ†’โ‹ƒdomโกMร—0ห™โˆˆโ„‘MW