Description: The constant zero function is a simple function. (Contributed by Thierry Arnoux, 4-Mar-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sitgval.b | |
|
sitgval.j | |
||
sitgval.s | |
||
sitgval.0 | |
||
sitgval.x | |
||
sitgval.h | |
||
sitgval.1 | |
||
sitgval.2 | |
||
sibf0.1 | |
||
sibf0.2 | |
||
Assertion | sibf0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sitgval.b | |
|
2 | sitgval.j | |
|
3 | sitgval.s | |
|
4 | sitgval.0 | |
|
5 | sitgval.x | |
|
6 | sitgval.h | |
|
7 | sitgval.1 | |
|
8 | sitgval.2 | |
|
9 | sibf0.1 | |
|
10 | sibf0.2 | |
|
11 | dmmeas | |
|
12 | 8 11 | syl | |
13 | 2 | fvexi | |
14 | 13 | a1i | |
15 | 14 | sgsiga | |
16 | 3 15 | eqeltrid | |
17 | fconstmpt | |
|
18 | 17 | a1i | |
19 | 1 4 | mndidcl | |
20 | 10 19 | syl | |
21 | 1 2 | tpsuni | |
22 | 9 21 | syl | |
23 | 3 | unieqi | |
24 | unisg | |
|
25 | 13 24 | mp1i | |
26 | 23 25 | eqtrid | |
27 | 22 26 | eqtr4d | |
28 | 20 27 | eleqtrd | |
29 | 12 16 18 28 | mbfmcst | |
30 | xpeq1 | |
|
31 | 0xp | |
|
32 | 30 31 | eqtrdi | |
33 | 32 | rneqd | |
34 | rn0 | |
|
35 | 33 34 | eqtrdi | |
36 | 0fin | |
|
37 | 35 36 | eqeltrdi | |
38 | rnxp | |
|
39 | snfi | |
|
40 | 38 39 | eqeltrdi | |
41 | 37 40 | pm2.61ine | |
42 | 41 | a1i | |
43 | noel | |
|
44 | 35 | difeq1d | |
45 | 0dif | |
|
46 | 44 45 | eqtrdi | |
47 | 38 | difeq1d | |
48 | difid | |
|
49 | 47 48 | eqtrdi | |
50 | 46 49 | pm2.61ine | |
51 | 50 | eleq2i | |
52 | 43 51 | mtbir | |
53 | 52 | pm2.21i | |
54 | 53 | adantl | |
55 | 54 | ralrimiva | |
56 | 1 2 3 4 5 6 7 8 | issibf | |
57 | 29 42 55 56 | mpbir3and | |