Metamath Proof Explorer


Theorem sibf0

Description: The constant zero function is a simple function. (Contributed by Thierry Arnoux, 4-Mar-2018)

Ref Expression
Hypotheses sitgval.b B = Base W
sitgval.j J = TopOpen W
sitgval.s S = 𝛔 J
sitgval.0 0 ˙ = 0 W
sitgval.x · ˙ = W
sitgval.h H = ℝHom Scalar W
sitgval.1 φ W V
sitgval.2 φ M ran measures
sibf0.1 φ W TopSp
sibf0.2 φ W Mnd
Assertion sibf0 φ dom M × 0 ˙ M W

Proof

Step Hyp Ref Expression
1 sitgval.b B = Base W
2 sitgval.j J = TopOpen W
3 sitgval.s S = 𝛔 J
4 sitgval.0 0 ˙ = 0 W
5 sitgval.x · ˙ = W
6 sitgval.h H = ℝHom Scalar W
7 sitgval.1 φ W V
8 sitgval.2 φ M ran measures
9 sibf0.1 φ W TopSp
10 sibf0.2 φ W Mnd
11 dmmeas M ran measures dom M ran sigAlgebra
12 8 11 syl φ dom M ran sigAlgebra
13 2 fvexi J V
14 13 a1i φ J V
15 14 sgsiga φ 𝛔 J ran sigAlgebra
16 3 15 eqeltrid φ S ran sigAlgebra
17 fconstmpt dom M × 0 ˙ = x dom M 0 ˙
18 17 a1i φ dom M × 0 ˙ = x dom M 0 ˙
19 1 4 mndidcl W Mnd 0 ˙ B
20 10 19 syl φ 0 ˙ B
21 1 2 tpsuni W TopSp B = J
22 9 21 syl φ B = J
23 3 unieqi S = 𝛔 J
24 unisg J V 𝛔 J = J
25 13 24 mp1i φ 𝛔 J = J
26 23 25 eqtrid φ S = J
27 22 26 eqtr4d φ B = S
28 20 27 eleqtrd φ 0 ˙ S
29 12 16 18 28 mbfmcst φ dom M × 0 ˙ dom M MblFn μ S
30 xpeq1 dom M = dom M × 0 ˙ = × 0 ˙
31 0xp × 0 ˙ =
32 30 31 eqtrdi dom M = dom M × 0 ˙ =
33 32 rneqd dom M = ran dom M × 0 ˙ = ran
34 rn0 ran =
35 33 34 eqtrdi dom M = ran dom M × 0 ˙ =
36 0fin Fin
37 35 36 eqeltrdi dom M = ran dom M × 0 ˙ Fin
38 rnxp dom M ran dom M × 0 ˙ = 0 ˙
39 snfi 0 ˙ Fin
40 38 39 eqeltrdi dom M ran dom M × 0 ˙ Fin
41 37 40 pm2.61ine ran dom M × 0 ˙ Fin
42 41 a1i φ ran dom M × 0 ˙ Fin
43 noel ¬ x
44 35 difeq1d dom M = ran dom M × 0 ˙ 0 ˙ = 0 ˙
45 0dif 0 ˙ =
46 44 45 eqtrdi dom M = ran dom M × 0 ˙ 0 ˙ =
47 38 difeq1d dom M ran dom M × 0 ˙ 0 ˙ = 0 ˙ 0 ˙
48 difid 0 ˙ 0 ˙ =
49 47 48 eqtrdi dom M ran dom M × 0 ˙ 0 ˙ =
50 46 49 pm2.61ine ran dom M × 0 ˙ 0 ˙ =
51 50 eleq2i x ran dom M × 0 ˙ 0 ˙ x
52 43 51 mtbir ¬ x ran dom M × 0 ˙ 0 ˙
53 52 pm2.21i x ran dom M × 0 ˙ 0 ˙ M dom M × 0 ˙ -1 x 0 +∞
54 53 adantl φ x ran dom M × 0 ˙ 0 ˙ M dom M × 0 ˙ -1 x 0 +∞
55 54 ralrimiva φ x ran dom M × 0 ˙ 0 ˙ M dom M × 0 ˙ -1 x 0 +∞
56 1 2 3 4 5 6 7 8 issibf φ dom M × 0 ˙ M W dom M × 0 ˙ dom M MblFn μ S ran dom M × 0 ˙ Fin x ran dom M × 0 ˙ 0 ˙ M dom M × 0 ˙ -1 x 0 +∞
57 29 42 55 56 mpbir3and φ dom M × 0 ˙ M W