| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sitgval.b |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
| 2 |
|
sitgval.j |
⊢ 𝐽 = ( TopOpen ‘ 𝑊 ) |
| 3 |
|
sitgval.s |
⊢ 𝑆 = ( sigaGen ‘ 𝐽 ) |
| 4 |
|
sitgval.0 |
⊢ 0 = ( 0g ‘ 𝑊 ) |
| 5 |
|
sitgval.x |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
| 6 |
|
sitgval.h |
⊢ 𝐻 = ( ℝHom ‘ ( Scalar ‘ 𝑊 ) ) |
| 7 |
|
sitgval.1 |
⊢ ( 𝜑 → 𝑊 ∈ 𝑉 ) |
| 8 |
|
sitgval.2 |
⊢ ( 𝜑 → 𝑀 ∈ ∪ ran measures ) |
| 9 |
|
sibf0.1 |
⊢ ( 𝜑 → 𝑊 ∈ TopSp ) |
| 10 |
|
sibf0.2 |
⊢ ( 𝜑 → 𝑊 ∈ Mnd ) |
| 11 |
|
dmmeas |
⊢ ( 𝑀 ∈ ∪ ran measures → dom 𝑀 ∈ ∪ ran sigAlgebra ) |
| 12 |
8 11
|
syl |
⊢ ( 𝜑 → dom 𝑀 ∈ ∪ ran sigAlgebra ) |
| 13 |
2
|
fvexi |
⊢ 𝐽 ∈ V |
| 14 |
13
|
a1i |
⊢ ( 𝜑 → 𝐽 ∈ V ) |
| 15 |
14
|
sgsiga |
⊢ ( 𝜑 → ( sigaGen ‘ 𝐽 ) ∈ ∪ ran sigAlgebra ) |
| 16 |
3 15
|
eqeltrid |
⊢ ( 𝜑 → 𝑆 ∈ ∪ ran sigAlgebra ) |
| 17 |
|
fconstmpt |
⊢ ( ∪ dom 𝑀 × { 0 } ) = ( 𝑥 ∈ ∪ dom 𝑀 ↦ 0 ) |
| 18 |
17
|
a1i |
⊢ ( 𝜑 → ( ∪ dom 𝑀 × { 0 } ) = ( 𝑥 ∈ ∪ dom 𝑀 ↦ 0 ) ) |
| 19 |
1 4
|
mndidcl |
⊢ ( 𝑊 ∈ Mnd → 0 ∈ 𝐵 ) |
| 20 |
10 19
|
syl |
⊢ ( 𝜑 → 0 ∈ 𝐵 ) |
| 21 |
1 2
|
tpsuni |
⊢ ( 𝑊 ∈ TopSp → 𝐵 = ∪ 𝐽 ) |
| 22 |
9 21
|
syl |
⊢ ( 𝜑 → 𝐵 = ∪ 𝐽 ) |
| 23 |
3
|
unieqi |
⊢ ∪ 𝑆 = ∪ ( sigaGen ‘ 𝐽 ) |
| 24 |
|
unisg |
⊢ ( 𝐽 ∈ V → ∪ ( sigaGen ‘ 𝐽 ) = ∪ 𝐽 ) |
| 25 |
13 24
|
mp1i |
⊢ ( 𝜑 → ∪ ( sigaGen ‘ 𝐽 ) = ∪ 𝐽 ) |
| 26 |
23 25
|
eqtrid |
⊢ ( 𝜑 → ∪ 𝑆 = ∪ 𝐽 ) |
| 27 |
22 26
|
eqtr4d |
⊢ ( 𝜑 → 𝐵 = ∪ 𝑆 ) |
| 28 |
20 27
|
eleqtrd |
⊢ ( 𝜑 → 0 ∈ ∪ 𝑆 ) |
| 29 |
12 16 18 28
|
mbfmcst |
⊢ ( 𝜑 → ( ∪ dom 𝑀 × { 0 } ) ∈ ( dom 𝑀 MblFnM 𝑆 ) ) |
| 30 |
|
xpeq1 |
⊢ ( ∪ dom 𝑀 = ∅ → ( ∪ dom 𝑀 × { 0 } ) = ( ∅ × { 0 } ) ) |
| 31 |
|
0xp |
⊢ ( ∅ × { 0 } ) = ∅ |
| 32 |
30 31
|
eqtrdi |
⊢ ( ∪ dom 𝑀 = ∅ → ( ∪ dom 𝑀 × { 0 } ) = ∅ ) |
| 33 |
32
|
rneqd |
⊢ ( ∪ dom 𝑀 = ∅ → ran ( ∪ dom 𝑀 × { 0 } ) = ran ∅ ) |
| 34 |
|
rn0 |
⊢ ran ∅ = ∅ |
| 35 |
33 34
|
eqtrdi |
⊢ ( ∪ dom 𝑀 = ∅ → ran ( ∪ dom 𝑀 × { 0 } ) = ∅ ) |
| 36 |
|
0fi |
⊢ ∅ ∈ Fin |
| 37 |
35 36
|
eqeltrdi |
⊢ ( ∪ dom 𝑀 = ∅ → ran ( ∪ dom 𝑀 × { 0 } ) ∈ Fin ) |
| 38 |
|
rnxp |
⊢ ( ∪ dom 𝑀 ≠ ∅ → ran ( ∪ dom 𝑀 × { 0 } ) = { 0 } ) |
| 39 |
|
snfi |
⊢ { 0 } ∈ Fin |
| 40 |
38 39
|
eqeltrdi |
⊢ ( ∪ dom 𝑀 ≠ ∅ → ran ( ∪ dom 𝑀 × { 0 } ) ∈ Fin ) |
| 41 |
37 40
|
pm2.61ine |
⊢ ran ( ∪ dom 𝑀 × { 0 } ) ∈ Fin |
| 42 |
41
|
a1i |
⊢ ( 𝜑 → ran ( ∪ dom 𝑀 × { 0 } ) ∈ Fin ) |
| 43 |
|
noel |
⊢ ¬ 𝑥 ∈ ∅ |
| 44 |
35
|
difeq1d |
⊢ ( ∪ dom 𝑀 = ∅ → ( ran ( ∪ dom 𝑀 × { 0 } ) ∖ { 0 } ) = ( ∅ ∖ { 0 } ) ) |
| 45 |
|
0dif |
⊢ ( ∅ ∖ { 0 } ) = ∅ |
| 46 |
44 45
|
eqtrdi |
⊢ ( ∪ dom 𝑀 = ∅ → ( ran ( ∪ dom 𝑀 × { 0 } ) ∖ { 0 } ) = ∅ ) |
| 47 |
38
|
difeq1d |
⊢ ( ∪ dom 𝑀 ≠ ∅ → ( ran ( ∪ dom 𝑀 × { 0 } ) ∖ { 0 } ) = ( { 0 } ∖ { 0 } ) ) |
| 48 |
|
difid |
⊢ ( { 0 } ∖ { 0 } ) = ∅ |
| 49 |
47 48
|
eqtrdi |
⊢ ( ∪ dom 𝑀 ≠ ∅ → ( ran ( ∪ dom 𝑀 × { 0 } ) ∖ { 0 } ) = ∅ ) |
| 50 |
46 49
|
pm2.61ine |
⊢ ( ran ( ∪ dom 𝑀 × { 0 } ) ∖ { 0 } ) = ∅ |
| 51 |
50
|
eleq2i |
⊢ ( 𝑥 ∈ ( ran ( ∪ dom 𝑀 × { 0 } ) ∖ { 0 } ) ↔ 𝑥 ∈ ∅ ) |
| 52 |
43 51
|
mtbir |
⊢ ¬ 𝑥 ∈ ( ran ( ∪ dom 𝑀 × { 0 } ) ∖ { 0 } ) |
| 53 |
52
|
pm2.21i |
⊢ ( 𝑥 ∈ ( ran ( ∪ dom 𝑀 × { 0 } ) ∖ { 0 } ) → ( 𝑀 ‘ ( ◡ ( ∪ dom 𝑀 × { 0 } ) “ { 𝑥 } ) ) ∈ ( 0 [,) +∞ ) ) |
| 54 |
53
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ran ( ∪ dom 𝑀 × { 0 } ) ∖ { 0 } ) ) → ( 𝑀 ‘ ( ◡ ( ∪ dom 𝑀 × { 0 } ) “ { 𝑥 } ) ) ∈ ( 0 [,) +∞ ) ) |
| 55 |
54
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( ran ( ∪ dom 𝑀 × { 0 } ) ∖ { 0 } ) ( 𝑀 ‘ ( ◡ ( ∪ dom 𝑀 × { 0 } ) “ { 𝑥 } ) ) ∈ ( 0 [,) +∞ ) ) |
| 56 |
1 2 3 4 5 6 7 8
|
issibf |
⊢ ( 𝜑 → ( ( ∪ dom 𝑀 × { 0 } ) ∈ dom ( 𝑊 sitg 𝑀 ) ↔ ( ( ∪ dom 𝑀 × { 0 } ) ∈ ( dom 𝑀 MblFnM 𝑆 ) ∧ ran ( ∪ dom 𝑀 × { 0 } ) ∈ Fin ∧ ∀ 𝑥 ∈ ( ran ( ∪ dom 𝑀 × { 0 } ) ∖ { 0 } ) ( 𝑀 ‘ ( ◡ ( ∪ dom 𝑀 × { 0 } ) “ { 𝑥 } ) ) ∈ ( 0 [,) +∞ ) ) ) ) |
| 57 |
29 42 55 56
|
mpbir3and |
⊢ ( 𝜑 → ( ∪ dom 𝑀 × { 0 } ) ∈ dom ( 𝑊 sitg 𝑀 ) ) |