Metamath Proof Explorer


Theorem sibf0

Description: The constant zero function is a simple function. (Contributed by Thierry Arnoux, 4-Mar-2018)

Ref Expression
Hypotheses sitgval.b 𝐵 = ( Base ‘ 𝑊 )
sitgval.j 𝐽 = ( TopOpen ‘ 𝑊 )
sitgval.s 𝑆 = ( sigaGen ‘ 𝐽 )
sitgval.0 0 = ( 0g𝑊 )
sitgval.x · = ( ·𝑠𝑊 )
sitgval.h 𝐻 = ( ℝHom ‘ ( Scalar ‘ 𝑊 ) )
sitgval.1 ( 𝜑𝑊𝑉 )
sitgval.2 ( 𝜑𝑀 ran measures )
sibf0.1 ( 𝜑𝑊 ∈ TopSp )
sibf0.2 ( 𝜑𝑊 ∈ Mnd )
Assertion sibf0 ( 𝜑 → ( dom 𝑀 × { 0 } ) ∈ dom ( 𝑊 sitg 𝑀 ) )

Proof

Step Hyp Ref Expression
1 sitgval.b 𝐵 = ( Base ‘ 𝑊 )
2 sitgval.j 𝐽 = ( TopOpen ‘ 𝑊 )
3 sitgval.s 𝑆 = ( sigaGen ‘ 𝐽 )
4 sitgval.0 0 = ( 0g𝑊 )
5 sitgval.x · = ( ·𝑠𝑊 )
6 sitgval.h 𝐻 = ( ℝHom ‘ ( Scalar ‘ 𝑊 ) )
7 sitgval.1 ( 𝜑𝑊𝑉 )
8 sitgval.2 ( 𝜑𝑀 ran measures )
9 sibf0.1 ( 𝜑𝑊 ∈ TopSp )
10 sibf0.2 ( 𝜑𝑊 ∈ Mnd )
11 dmmeas ( 𝑀 ran measures → dom 𝑀 ran sigAlgebra )
12 8 11 syl ( 𝜑 → dom 𝑀 ran sigAlgebra )
13 2 fvexi 𝐽 ∈ V
14 13 a1i ( 𝜑𝐽 ∈ V )
15 14 sgsiga ( 𝜑 → ( sigaGen ‘ 𝐽 ) ∈ ran sigAlgebra )
16 3 15 eqeltrid ( 𝜑𝑆 ran sigAlgebra )
17 fconstmpt ( dom 𝑀 × { 0 } ) = ( 𝑥 dom 𝑀0 )
18 17 a1i ( 𝜑 → ( dom 𝑀 × { 0 } ) = ( 𝑥 dom 𝑀0 ) )
19 1 4 mndidcl ( 𝑊 ∈ Mnd → 0𝐵 )
20 10 19 syl ( 𝜑0𝐵 )
21 1 2 tpsuni ( 𝑊 ∈ TopSp → 𝐵 = 𝐽 )
22 9 21 syl ( 𝜑𝐵 = 𝐽 )
23 3 unieqi 𝑆 = ( sigaGen ‘ 𝐽 )
24 unisg ( 𝐽 ∈ V → ( sigaGen ‘ 𝐽 ) = 𝐽 )
25 13 24 mp1i ( 𝜑 ( sigaGen ‘ 𝐽 ) = 𝐽 )
26 23 25 eqtrid ( 𝜑 𝑆 = 𝐽 )
27 22 26 eqtr4d ( 𝜑𝐵 = 𝑆 )
28 20 27 eleqtrd ( 𝜑0 𝑆 )
29 12 16 18 28 mbfmcst ( 𝜑 → ( dom 𝑀 × { 0 } ) ∈ ( dom 𝑀 MblFnM 𝑆 ) )
30 xpeq1 ( dom 𝑀 = ∅ → ( dom 𝑀 × { 0 } ) = ( ∅ × { 0 } ) )
31 0xp ( ∅ × { 0 } ) = ∅
32 30 31 eqtrdi ( dom 𝑀 = ∅ → ( dom 𝑀 × { 0 } ) = ∅ )
33 32 rneqd ( dom 𝑀 = ∅ → ran ( dom 𝑀 × { 0 } ) = ran ∅ )
34 rn0 ran ∅ = ∅
35 33 34 eqtrdi ( dom 𝑀 = ∅ → ran ( dom 𝑀 × { 0 } ) = ∅ )
36 0fin ∅ ∈ Fin
37 35 36 eqeltrdi ( dom 𝑀 = ∅ → ran ( dom 𝑀 × { 0 } ) ∈ Fin )
38 rnxp ( dom 𝑀 ≠ ∅ → ran ( dom 𝑀 × { 0 } ) = { 0 } )
39 snfi { 0 } ∈ Fin
40 38 39 eqeltrdi ( dom 𝑀 ≠ ∅ → ran ( dom 𝑀 × { 0 } ) ∈ Fin )
41 37 40 pm2.61ine ran ( dom 𝑀 × { 0 } ) ∈ Fin
42 41 a1i ( 𝜑 → ran ( dom 𝑀 × { 0 } ) ∈ Fin )
43 noel ¬ 𝑥 ∈ ∅
44 35 difeq1d ( dom 𝑀 = ∅ → ( ran ( dom 𝑀 × { 0 } ) ∖ { 0 } ) = ( ∅ ∖ { 0 } ) )
45 0dif ( ∅ ∖ { 0 } ) = ∅
46 44 45 eqtrdi ( dom 𝑀 = ∅ → ( ran ( dom 𝑀 × { 0 } ) ∖ { 0 } ) = ∅ )
47 38 difeq1d ( dom 𝑀 ≠ ∅ → ( ran ( dom 𝑀 × { 0 } ) ∖ { 0 } ) = ( { 0 } ∖ { 0 } ) )
48 difid ( { 0 } ∖ { 0 } ) = ∅
49 47 48 eqtrdi ( dom 𝑀 ≠ ∅ → ( ran ( dom 𝑀 × { 0 } ) ∖ { 0 } ) = ∅ )
50 46 49 pm2.61ine ( ran ( dom 𝑀 × { 0 } ) ∖ { 0 } ) = ∅
51 50 eleq2i ( 𝑥 ∈ ( ran ( dom 𝑀 × { 0 } ) ∖ { 0 } ) ↔ 𝑥 ∈ ∅ )
52 43 51 mtbir ¬ 𝑥 ∈ ( ran ( dom 𝑀 × { 0 } ) ∖ { 0 } )
53 52 pm2.21i ( 𝑥 ∈ ( ran ( dom 𝑀 × { 0 } ) ∖ { 0 } ) → ( 𝑀 ‘ ( ( dom 𝑀 × { 0 } ) “ { 𝑥 } ) ) ∈ ( 0 [,) +∞ ) )
54 53 adantl ( ( 𝜑𝑥 ∈ ( ran ( dom 𝑀 × { 0 } ) ∖ { 0 } ) ) → ( 𝑀 ‘ ( ( dom 𝑀 × { 0 } ) “ { 𝑥 } ) ) ∈ ( 0 [,) +∞ ) )
55 54 ralrimiva ( 𝜑 → ∀ 𝑥 ∈ ( ran ( dom 𝑀 × { 0 } ) ∖ { 0 } ) ( 𝑀 ‘ ( ( dom 𝑀 × { 0 } ) “ { 𝑥 } ) ) ∈ ( 0 [,) +∞ ) )
56 1 2 3 4 5 6 7 8 issibf ( 𝜑 → ( ( dom 𝑀 × { 0 } ) ∈ dom ( 𝑊 sitg 𝑀 ) ↔ ( ( dom 𝑀 × { 0 } ) ∈ ( dom 𝑀 MblFnM 𝑆 ) ∧ ran ( dom 𝑀 × { 0 } ) ∈ Fin ∧ ∀ 𝑥 ∈ ( ran ( dom 𝑀 × { 0 } ) ∖ { 0 } ) ( 𝑀 ‘ ( ( dom 𝑀 × { 0 } ) “ { 𝑥 } ) ) ∈ ( 0 [,) +∞ ) ) ) )
57 29 42 55 56 mpbir3and ( 𝜑 → ( dom 𝑀 × { 0 } ) ∈ dom ( 𝑊 sitg 𝑀 ) )