Metamath Proof Explorer


Theorem issibf

Description: The predicate " F is a simple function" relative to the Bochner integral. (Contributed by Thierry Arnoux, 19-Feb-2018)

Ref Expression
Hypotheses sitgval.b 𝐵 = ( Base ‘ 𝑊 )
sitgval.j 𝐽 = ( TopOpen ‘ 𝑊 )
sitgval.s 𝑆 = ( sigaGen ‘ 𝐽 )
sitgval.0 0 = ( 0g𝑊 )
sitgval.x · = ( ·𝑠𝑊 )
sitgval.h 𝐻 = ( ℝHom ‘ ( Scalar ‘ 𝑊 ) )
sitgval.1 ( 𝜑𝑊𝑉 )
sitgval.2 ( 𝜑𝑀 ran measures )
Assertion issibf ( 𝜑 → ( 𝐹 ∈ dom ( 𝑊 sitg 𝑀 ) ↔ ( 𝐹 ∈ ( dom 𝑀 MblFnM 𝑆 ) ∧ ran 𝐹 ∈ Fin ∧ ∀ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ( 𝑀 ‘ ( 𝐹 “ { 𝑥 } ) ) ∈ ( 0 [,) +∞ ) ) ) )

Proof

Step Hyp Ref Expression
1 sitgval.b 𝐵 = ( Base ‘ 𝑊 )
2 sitgval.j 𝐽 = ( TopOpen ‘ 𝑊 )
3 sitgval.s 𝑆 = ( sigaGen ‘ 𝐽 )
4 sitgval.0 0 = ( 0g𝑊 )
5 sitgval.x · = ( ·𝑠𝑊 )
6 sitgval.h 𝐻 = ( ℝHom ‘ ( Scalar ‘ 𝑊 ) )
7 sitgval.1 ( 𝜑𝑊𝑉 )
8 sitgval.2 ( 𝜑𝑀 ran measures )
9 1 2 3 4 5 6 7 8 sitgval ( 𝜑 → ( 𝑊 sitg 𝑀 ) = ( 𝑓 ∈ { 𝑔 ∈ ( dom 𝑀 MblFnM 𝑆 ) ∣ ( ran 𝑔 ∈ Fin ∧ ∀ 𝑥 ∈ ( ran 𝑔 ∖ { 0 } ) ( 𝑀 ‘ ( 𝑔 “ { 𝑥 } ) ) ∈ ( 0 [,) +∞ ) ) } ↦ ( 𝑊 Σg ( 𝑥 ∈ ( ran 𝑓 ∖ { 0 } ) ↦ ( ( 𝐻 ‘ ( 𝑀 ‘ ( 𝑓 “ { 𝑥 } ) ) ) · 𝑥 ) ) ) ) )
10 9 dmeqd ( 𝜑 → dom ( 𝑊 sitg 𝑀 ) = dom ( 𝑓 ∈ { 𝑔 ∈ ( dom 𝑀 MblFnM 𝑆 ) ∣ ( ran 𝑔 ∈ Fin ∧ ∀ 𝑥 ∈ ( ran 𝑔 ∖ { 0 } ) ( 𝑀 ‘ ( 𝑔 “ { 𝑥 } ) ) ∈ ( 0 [,) +∞ ) ) } ↦ ( 𝑊 Σg ( 𝑥 ∈ ( ran 𝑓 ∖ { 0 } ) ↦ ( ( 𝐻 ‘ ( 𝑀 ‘ ( 𝑓 “ { 𝑥 } ) ) ) · 𝑥 ) ) ) ) )
11 eqid ( 𝑓 ∈ { 𝑔 ∈ ( dom 𝑀 MblFnM 𝑆 ) ∣ ( ran 𝑔 ∈ Fin ∧ ∀ 𝑥 ∈ ( ran 𝑔 ∖ { 0 } ) ( 𝑀 ‘ ( 𝑔 “ { 𝑥 } ) ) ∈ ( 0 [,) +∞ ) ) } ↦ ( 𝑊 Σg ( 𝑥 ∈ ( ran 𝑓 ∖ { 0 } ) ↦ ( ( 𝐻 ‘ ( 𝑀 ‘ ( 𝑓 “ { 𝑥 } ) ) ) · 𝑥 ) ) ) ) = ( 𝑓 ∈ { 𝑔 ∈ ( dom 𝑀 MblFnM 𝑆 ) ∣ ( ran 𝑔 ∈ Fin ∧ ∀ 𝑥 ∈ ( ran 𝑔 ∖ { 0 } ) ( 𝑀 ‘ ( 𝑔 “ { 𝑥 } ) ) ∈ ( 0 [,) +∞ ) ) } ↦ ( 𝑊 Σg ( 𝑥 ∈ ( ran 𝑓 ∖ { 0 } ) ↦ ( ( 𝐻 ‘ ( 𝑀 ‘ ( 𝑓 “ { 𝑥 } ) ) ) · 𝑥 ) ) ) )
12 11 dmmpt dom ( 𝑓 ∈ { 𝑔 ∈ ( dom 𝑀 MblFnM 𝑆 ) ∣ ( ran 𝑔 ∈ Fin ∧ ∀ 𝑥 ∈ ( ran 𝑔 ∖ { 0 } ) ( 𝑀 ‘ ( 𝑔 “ { 𝑥 } ) ) ∈ ( 0 [,) +∞ ) ) } ↦ ( 𝑊 Σg ( 𝑥 ∈ ( ran 𝑓 ∖ { 0 } ) ↦ ( ( 𝐻 ‘ ( 𝑀 ‘ ( 𝑓 “ { 𝑥 } ) ) ) · 𝑥 ) ) ) ) = { 𝑓 ∈ { 𝑔 ∈ ( dom 𝑀 MblFnM 𝑆 ) ∣ ( ran 𝑔 ∈ Fin ∧ ∀ 𝑥 ∈ ( ran 𝑔 ∖ { 0 } ) ( 𝑀 ‘ ( 𝑔 “ { 𝑥 } ) ) ∈ ( 0 [,) +∞ ) ) } ∣ ( 𝑊 Σg ( 𝑥 ∈ ( ran 𝑓 ∖ { 0 } ) ↦ ( ( 𝐻 ‘ ( 𝑀 ‘ ( 𝑓 “ { 𝑥 } ) ) ) · 𝑥 ) ) ) ∈ V }
13 10 12 eqtrdi ( 𝜑 → dom ( 𝑊 sitg 𝑀 ) = { 𝑓 ∈ { 𝑔 ∈ ( dom 𝑀 MblFnM 𝑆 ) ∣ ( ran 𝑔 ∈ Fin ∧ ∀ 𝑥 ∈ ( ran 𝑔 ∖ { 0 } ) ( 𝑀 ‘ ( 𝑔 “ { 𝑥 } ) ) ∈ ( 0 [,) +∞ ) ) } ∣ ( 𝑊 Σg ( 𝑥 ∈ ( ran 𝑓 ∖ { 0 } ) ↦ ( ( 𝐻 ‘ ( 𝑀 ‘ ( 𝑓 “ { 𝑥 } ) ) ) · 𝑥 ) ) ) ∈ V } )
14 13 eleq2d ( 𝜑 → ( 𝐹 ∈ dom ( 𝑊 sitg 𝑀 ) ↔ 𝐹 ∈ { 𝑓 ∈ { 𝑔 ∈ ( dom 𝑀 MblFnM 𝑆 ) ∣ ( ran 𝑔 ∈ Fin ∧ ∀ 𝑥 ∈ ( ran 𝑔 ∖ { 0 } ) ( 𝑀 ‘ ( 𝑔 “ { 𝑥 } ) ) ∈ ( 0 [,) +∞ ) ) } ∣ ( 𝑊 Σg ( 𝑥 ∈ ( ran 𝑓 ∖ { 0 } ) ↦ ( ( 𝐻 ‘ ( 𝑀 ‘ ( 𝑓 “ { 𝑥 } ) ) ) · 𝑥 ) ) ) ∈ V } ) )
15 rneq ( 𝑓 = 𝐹 → ran 𝑓 = ran 𝐹 )
16 15 difeq1d ( 𝑓 = 𝐹 → ( ran 𝑓 ∖ { 0 } ) = ( ran 𝐹 ∖ { 0 } ) )
17 cnveq ( 𝑓 = 𝐹 𝑓 = 𝐹 )
18 17 imaeq1d ( 𝑓 = 𝐹 → ( 𝑓 “ { 𝑥 } ) = ( 𝐹 “ { 𝑥 } ) )
19 18 fveq2d ( 𝑓 = 𝐹 → ( 𝑀 ‘ ( 𝑓 “ { 𝑥 } ) ) = ( 𝑀 ‘ ( 𝐹 “ { 𝑥 } ) ) )
20 19 fveq2d ( 𝑓 = 𝐹 → ( 𝐻 ‘ ( 𝑀 ‘ ( 𝑓 “ { 𝑥 } ) ) ) = ( 𝐻 ‘ ( 𝑀 ‘ ( 𝐹 “ { 𝑥 } ) ) ) )
21 20 oveq1d ( 𝑓 = 𝐹 → ( ( 𝐻 ‘ ( 𝑀 ‘ ( 𝑓 “ { 𝑥 } ) ) ) · 𝑥 ) = ( ( 𝐻 ‘ ( 𝑀 ‘ ( 𝐹 “ { 𝑥 } ) ) ) · 𝑥 ) )
22 16 21 mpteq12dv ( 𝑓 = 𝐹 → ( 𝑥 ∈ ( ran 𝑓 ∖ { 0 } ) ↦ ( ( 𝐻 ‘ ( 𝑀 ‘ ( 𝑓 “ { 𝑥 } ) ) ) · 𝑥 ) ) = ( 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ↦ ( ( 𝐻 ‘ ( 𝑀 ‘ ( 𝐹 “ { 𝑥 } ) ) ) · 𝑥 ) ) )
23 22 oveq2d ( 𝑓 = 𝐹 → ( 𝑊 Σg ( 𝑥 ∈ ( ran 𝑓 ∖ { 0 } ) ↦ ( ( 𝐻 ‘ ( 𝑀 ‘ ( 𝑓 “ { 𝑥 } ) ) ) · 𝑥 ) ) ) = ( 𝑊 Σg ( 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ↦ ( ( 𝐻 ‘ ( 𝑀 ‘ ( 𝐹 “ { 𝑥 } ) ) ) · 𝑥 ) ) ) )
24 23 eleq1d ( 𝑓 = 𝐹 → ( ( 𝑊 Σg ( 𝑥 ∈ ( ran 𝑓 ∖ { 0 } ) ↦ ( ( 𝐻 ‘ ( 𝑀 ‘ ( 𝑓 “ { 𝑥 } ) ) ) · 𝑥 ) ) ) ∈ V ↔ ( 𝑊 Σg ( 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ↦ ( ( 𝐻 ‘ ( 𝑀 ‘ ( 𝐹 “ { 𝑥 } ) ) ) · 𝑥 ) ) ) ∈ V ) )
25 24 elrab ( 𝐹 ∈ { 𝑓 ∈ { 𝑔 ∈ ( dom 𝑀 MblFnM 𝑆 ) ∣ ( ran 𝑔 ∈ Fin ∧ ∀ 𝑥 ∈ ( ran 𝑔 ∖ { 0 } ) ( 𝑀 ‘ ( 𝑔 “ { 𝑥 } ) ) ∈ ( 0 [,) +∞ ) ) } ∣ ( 𝑊 Σg ( 𝑥 ∈ ( ran 𝑓 ∖ { 0 } ) ↦ ( ( 𝐻 ‘ ( 𝑀 ‘ ( 𝑓 “ { 𝑥 } ) ) ) · 𝑥 ) ) ) ∈ V } ↔ ( 𝐹 ∈ { 𝑔 ∈ ( dom 𝑀 MblFnM 𝑆 ) ∣ ( ran 𝑔 ∈ Fin ∧ ∀ 𝑥 ∈ ( ran 𝑔 ∖ { 0 } ) ( 𝑀 ‘ ( 𝑔 “ { 𝑥 } ) ) ∈ ( 0 [,) +∞ ) ) } ∧ ( 𝑊 Σg ( 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ↦ ( ( 𝐻 ‘ ( 𝑀 ‘ ( 𝐹 “ { 𝑥 } ) ) ) · 𝑥 ) ) ) ∈ V ) )
26 14 25 bitrdi ( 𝜑 → ( 𝐹 ∈ dom ( 𝑊 sitg 𝑀 ) ↔ ( 𝐹 ∈ { 𝑔 ∈ ( dom 𝑀 MblFnM 𝑆 ) ∣ ( ran 𝑔 ∈ Fin ∧ ∀ 𝑥 ∈ ( ran 𝑔 ∖ { 0 } ) ( 𝑀 ‘ ( 𝑔 “ { 𝑥 } ) ) ∈ ( 0 [,) +∞ ) ) } ∧ ( 𝑊 Σg ( 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ↦ ( ( 𝐻 ‘ ( 𝑀 ‘ ( 𝐹 “ { 𝑥 } ) ) ) · 𝑥 ) ) ) ∈ V ) ) )
27 ovex ( 𝑊 Σg ( 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ↦ ( ( 𝐻 ‘ ( 𝑀 ‘ ( 𝐹 “ { 𝑥 } ) ) ) · 𝑥 ) ) ) ∈ V
28 27 biantru ( 𝐹 ∈ { 𝑔 ∈ ( dom 𝑀 MblFnM 𝑆 ) ∣ ( ran 𝑔 ∈ Fin ∧ ∀ 𝑥 ∈ ( ran 𝑔 ∖ { 0 } ) ( 𝑀 ‘ ( 𝑔 “ { 𝑥 } ) ) ∈ ( 0 [,) +∞ ) ) } ↔ ( 𝐹 ∈ { 𝑔 ∈ ( dom 𝑀 MblFnM 𝑆 ) ∣ ( ran 𝑔 ∈ Fin ∧ ∀ 𝑥 ∈ ( ran 𝑔 ∖ { 0 } ) ( 𝑀 ‘ ( 𝑔 “ { 𝑥 } ) ) ∈ ( 0 [,) +∞ ) ) } ∧ ( 𝑊 Σg ( 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ↦ ( ( 𝐻 ‘ ( 𝑀 ‘ ( 𝐹 “ { 𝑥 } ) ) ) · 𝑥 ) ) ) ∈ V ) )
29 26 28 bitr4di ( 𝜑 → ( 𝐹 ∈ dom ( 𝑊 sitg 𝑀 ) ↔ 𝐹 ∈ { 𝑔 ∈ ( dom 𝑀 MblFnM 𝑆 ) ∣ ( ran 𝑔 ∈ Fin ∧ ∀ 𝑥 ∈ ( ran 𝑔 ∖ { 0 } ) ( 𝑀 ‘ ( 𝑔 “ { 𝑥 } ) ) ∈ ( 0 [,) +∞ ) ) } ) )
30 rneq ( 𝑔 = 𝐹 → ran 𝑔 = ran 𝐹 )
31 30 eleq1d ( 𝑔 = 𝐹 → ( ran 𝑔 ∈ Fin ↔ ran 𝐹 ∈ Fin ) )
32 30 difeq1d ( 𝑔 = 𝐹 → ( ran 𝑔 ∖ { 0 } ) = ( ran 𝐹 ∖ { 0 } ) )
33 cnveq ( 𝑔 = 𝐹 𝑔 = 𝐹 )
34 33 imaeq1d ( 𝑔 = 𝐹 → ( 𝑔 “ { 𝑥 } ) = ( 𝐹 “ { 𝑥 } ) )
35 34 fveq2d ( 𝑔 = 𝐹 → ( 𝑀 ‘ ( 𝑔 “ { 𝑥 } ) ) = ( 𝑀 ‘ ( 𝐹 “ { 𝑥 } ) ) )
36 35 eleq1d ( 𝑔 = 𝐹 → ( ( 𝑀 ‘ ( 𝑔 “ { 𝑥 } ) ) ∈ ( 0 [,) +∞ ) ↔ ( 𝑀 ‘ ( 𝐹 “ { 𝑥 } ) ) ∈ ( 0 [,) +∞ ) ) )
37 32 36 raleqbidv ( 𝑔 = 𝐹 → ( ∀ 𝑥 ∈ ( ran 𝑔 ∖ { 0 } ) ( 𝑀 ‘ ( 𝑔 “ { 𝑥 } ) ) ∈ ( 0 [,) +∞ ) ↔ ∀ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ( 𝑀 ‘ ( 𝐹 “ { 𝑥 } ) ) ∈ ( 0 [,) +∞ ) ) )
38 31 37 anbi12d ( 𝑔 = 𝐹 → ( ( ran 𝑔 ∈ Fin ∧ ∀ 𝑥 ∈ ( ran 𝑔 ∖ { 0 } ) ( 𝑀 ‘ ( 𝑔 “ { 𝑥 } ) ) ∈ ( 0 [,) +∞ ) ) ↔ ( ran 𝐹 ∈ Fin ∧ ∀ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ( 𝑀 ‘ ( 𝐹 “ { 𝑥 } ) ) ∈ ( 0 [,) +∞ ) ) ) )
39 38 elrab ( 𝐹 ∈ { 𝑔 ∈ ( dom 𝑀 MblFnM 𝑆 ) ∣ ( ran 𝑔 ∈ Fin ∧ ∀ 𝑥 ∈ ( ran 𝑔 ∖ { 0 } ) ( 𝑀 ‘ ( 𝑔 “ { 𝑥 } ) ) ∈ ( 0 [,) +∞ ) ) } ↔ ( 𝐹 ∈ ( dom 𝑀 MblFnM 𝑆 ) ∧ ( ran 𝐹 ∈ Fin ∧ ∀ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ( 𝑀 ‘ ( 𝐹 “ { 𝑥 } ) ) ∈ ( 0 [,) +∞ ) ) ) )
40 29 39 bitrdi ( 𝜑 → ( 𝐹 ∈ dom ( 𝑊 sitg 𝑀 ) ↔ ( 𝐹 ∈ ( dom 𝑀 MblFnM 𝑆 ) ∧ ( ran 𝐹 ∈ Fin ∧ ∀ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ( 𝑀 ‘ ( 𝐹 “ { 𝑥 } ) ) ∈ ( 0 [,) +∞ ) ) ) ) )
41 3anass ( ( 𝐹 ∈ ( dom 𝑀 MblFnM 𝑆 ) ∧ ran 𝐹 ∈ Fin ∧ ∀ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ( 𝑀 ‘ ( 𝐹 “ { 𝑥 } ) ) ∈ ( 0 [,) +∞ ) ) ↔ ( 𝐹 ∈ ( dom 𝑀 MblFnM 𝑆 ) ∧ ( ran 𝐹 ∈ Fin ∧ ∀ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ( 𝑀 ‘ ( 𝐹 “ { 𝑥 } ) ) ∈ ( 0 [,) +∞ ) ) ) )
42 40 41 bitr4di ( 𝜑 → ( 𝐹 ∈ dom ( 𝑊 sitg 𝑀 ) ↔ ( 𝐹 ∈ ( dom 𝑀 MblFnM 𝑆 ) ∧ ran 𝐹 ∈ Fin ∧ ∀ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ( 𝑀 ‘ ( 𝐹 “ { 𝑥 } ) ) ∈ ( 0 [,) +∞ ) ) ) )