| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sitgval.b | ⊢ 𝐵  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | sitgval.j | ⊢ 𝐽  =  ( TopOpen ‘ 𝑊 ) | 
						
							| 3 |  | sitgval.s | ⊢ 𝑆  =  ( sigaGen ‘ 𝐽 ) | 
						
							| 4 |  | sitgval.0 | ⊢  0   =  ( 0g ‘ 𝑊 ) | 
						
							| 5 |  | sitgval.x | ⊢  ·   =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 6 |  | sitgval.h | ⊢ 𝐻  =  ( ℝHom ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 7 |  | sitgval.1 | ⊢ ( 𝜑  →  𝑊  ∈  𝑉 ) | 
						
							| 8 |  | sitgval.2 | ⊢ ( 𝜑  →  𝑀  ∈  ∪  ran  measures ) | 
						
							| 9 | 1 2 3 4 5 6 7 8 | sitgval | ⊢ ( 𝜑  →  ( 𝑊 sitg 𝑀 )  =  ( 𝑓  ∈  { 𝑔  ∈  ( dom  𝑀 MblFnM 𝑆 )  ∣  ( ran  𝑔  ∈  Fin  ∧  ∀ 𝑥  ∈  ( ran  𝑔  ∖  {  0  } ) ( 𝑀 ‘ ( ◡ 𝑔  “  { 𝑥 } ) )  ∈  ( 0 [,) +∞ ) ) }  ↦  ( 𝑊  Σg  ( 𝑥  ∈  ( ran  𝑓  ∖  {  0  } )  ↦  ( ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝑓  “  { 𝑥 } ) ) )  ·  𝑥 ) ) ) ) ) | 
						
							| 10 | 9 | dmeqd | ⊢ ( 𝜑  →  dom  ( 𝑊 sitg 𝑀 )  =  dom  ( 𝑓  ∈  { 𝑔  ∈  ( dom  𝑀 MblFnM 𝑆 )  ∣  ( ran  𝑔  ∈  Fin  ∧  ∀ 𝑥  ∈  ( ran  𝑔  ∖  {  0  } ) ( 𝑀 ‘ ( ◡ 𝑔  “  { 𝑥 } ) )  ∈  ( 0 [,) +∞ ) ) }  ↦  ( 𝑊  Σg  ( 𝑥  ∈  ( ran  𝑓  ∖  {  0  } )  ↦  ( ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝑓  “  { 𝑥 } ) ) )  ·  𝑥 ) ) ) ) ) | 
						
							| 11 |  | eqid | ⊢ ( 𝑓  ∈  { 𝑔  ∈  ( dom  𝑀 MblFnM 𝑆 )  ∣  ( ran  𝑔  ∈  Fin  ∧  ∀ 𝑥  ∈  ( ran  𝑔  ∖  {  0  } ) ( 𝑀 ‘ ( ◡ 𝑔  “  { 𝑥 } ) )  ∈  ( 0 [,) +∞ ) ) }  ↦  ( 𝑊  Σg  ( 𝑥  ∈  ( ran  𝑓  ∖  {  0  } )  ↦  ( ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝑓  “  { 𝑥 } ) ) )  ·  𝑥 ) ) ) )  =  ( 𝑓  ∈  { 𝑔  ∈  ( dom  𝑀 MblFnM 𝑆 )  ∣  ( ran  𝑔  ∈  Fin  ∧  ∀ 𝑥  ∈  ( ran  𝑔  ∖  {  0  } ) ( 𝑀 ‘ ( ◡ 𝑔  “  { 𝑥 } ) )  ∈  ( 0 [,) +∞ ) ) }  ↦  ( 𝑊  Σg  ( 𝑥  ∈  ( ran  𝑓  ∖  {  0  } )  ↦  ( ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝑓  “  { 𝑥 } ) ) )  ·  𝑥 ) ) ) ) | 
						
							| 12 | 11 | dmmpt | ⊢ dom  ( 𝑓  ∈  { 𝑔  ∈  ( dom  𝑀 MblFnM 𝑆 )  ∣  ( ran  𝑔  ∈  Fin  ∧  ∀ 𝑥  ∈  ( ran  𝑔  ∖  {  0  } ) ( 𝑀 ‘ ( ◡ 𝑔  “  { 𝑥 } ) )  ∈  ( 0 [,) +∞ ) ) }  ↦  ( 𝑊  Σg  ( 𝑥  ∈  ( ran  𝑓  ∖  {  0  } )  ↦  ( ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝑓  “  { 𝑥 } ) ) )  ·  𝑥 ) ) ) )  =  { 𝑓  ∈  { 𝑔  ∈  ( dom  𝑀 MblFnM 𝑆 )  ∣  ( ran  𝑔  ∈  Fin  ∧  ∀ 𝑥  ∈  ( ran  𝑔  ∖  {  0  } ) ( 𝑀 ‘ ( ◡ 𝑔  “  { 𝑥 } ) )  ∈  ( 0 [,) +∞ ) ) }  ∣  ( 𝑊  Σg  ( 𝑥  ∈  ( ran  𝑓  ∖  {  0  } )  ↦  ( ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝑓  “  { 𝑥 } ) ) )  ·  𝑥 ) ) )  ∈  V } | 
						
							| 13 | 10 12 | eqtrdi | ⊢ ( 𝜑  →  dom  ( 𝑊 sitg 𝑀 )  =  { 𝑓  ∈  { 𝑔  ∈  ( dom  𝑀 MblFnM 𝑆 )  ∣  ( ran  𝑔  ∈  Fin  ∧  ∀ 𝑥  ∈  ( ran  𝑔  ∖  {  0  } ) ( 𝑀 ‘ ( ◡ 𝑔  “  { 𝑥 } ) )  ∈  ( 0 [,) +∞ ) ) }  ∣  ( 𝑊  Σg  ( 𝑥  ∈  ( ran  𝑓  ∖  {  0  } )  ↦  ( ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝑓  “  { 𝑥 } ) ) )  ·  𝑥 ) ) )  ∈  V } ) | 
						
							| 14 | 13 | eleq2d | ⊢ ( 𝜑  →  ( 𝐹  ∈  dom  ( 𝑊 sitg 𝑀 )  ↔  𝐹  ∈  { 𝑓  ∈  { 𝑔  ∈  ( dom  𝑀 MblFnM 𝑆 )  ∣  ( ran  𝑔  ∈  Fin  ∧  ∀ 𝑥  ∈  ( ran  𝑔  ∖  {  0  } ) ( 𝑀 ‘ ( ◡ 𝑔  “  { 𝑥 } ) )  ∈  ( 0 [,) +∞ ) ) }  ∣  ( 𝑊  Σg  ( 𝑥  ∈  ( ran  𝑓  ∖  {  0  } )  ↦  ( ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝑓  “  { 𝑥 } ) ) )  ·  𝑥 ) ) )  ∈  V } ) ) | 
						
							| 15 |  | rneq | ⊢ ( 𝑓  =  𝐹  →  ran  𝑓  =  ran  𝐹 ) | 
						
							| 16 | 15 | difeq1d | ⊢ ( 𝑓  =  𝐹  →  ( ran  𝑓  ∖  {  0  } )  =  ( ran  𝐹  ∖  {  0  } ) ) | 
						
							| 17 |  | cnveq | ⊢ ( 𝑓  =  𝐹  →  ◡ 𝑓  =  ◡ 𝐹 ) | 
						
							| 18 | 17 | imaeq1d | ⊢ ( 𝑓  =  𝐹  →  ( ◡ 𝑓  “  { 𝑥 } )  =  ( ◡ 𝐹  “  { 𝑥 } ) ) | 
						
							| 19 | 18 | fveq2d | ⊢ ( 𝑓  =  𝐹  →  ( 𝑀 ‘ ( ◡ 𝑓  “  { 𝑥 } ) )  =  ( 𝑀 ‘ ( ◡ 𝐹  “  { 𝑥 } ) ) ) | 
						
							| 20 | 19 | fveq2d | ⊢ ( 𝑓  =  𝐹  →  ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝑓  “  { 𝑥 } ) ) )  =  ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝐹  “  { 𝑥 } ) ) ) ) | 
						
							| 21 | 20 | oveq1d | ⊢ ( 𝑓  =  𝐹  →  ( ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝑓  “  { 𝑥 } ) ) )  ·  𝑥 )  =  ( ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝐹  “  { 𝑥 } ) ) )  ·  𝑥 ) ) | 
						
							| 22 | 16 21 | mpteq12dv | ⊢ ( 𝑓  =  𝐹  →  ( 𝑥  ∈  ( ran  𝑓  ∖  {  0  } )  ↦  ( ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝑓  “  { 𝑥 } ) ) )  ·  𝑥 ) )  =  ( 𝑥  ∈  ( ran  𝐹  ∖  {  0  } )  ↦  ( ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝐹  “  { 𝑥 } ) ) )  ·  𝑥 ) ) ) | 
						
							| 23 | 22 | oveq2d | ⊢ ( 𝑓  =  𝐹  →  ( 𝑊  Σg  ( 𝑥  ∈  ( ran  𝑓  ∖  {  0  } )  ↦  ( ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝑓  “  { 𝑥 } ) ) )  ·  𝑥 ) ) )  =  ( 𝑊  Σg  ( 𝑥  ∈  ( ran  𝐹  ∖  {  0  } )  ↦  ( ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝐹  “  { 𝑥 } ) ) )  ·  𝑥 ) ) ) ) | 
						
							| 24 | 23 | eleq1d | ⊢ ( 𝑓  =  𝐹  →  ( ( 𝑊  Σg  ( 𝑥  ∈  ( ran  𝑓  ∖  {  0  } )  ↦  ( ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝑓  “  { 𝑥 } ) ) )  ·  𝑥 ) ) )  ∈  V  ↔  ( 𝑊  Σg  ( 𝑥  ∈  ( ran  𝐹  ∖  {  0  } )  ↦  ( ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝐹  “  { 𝑥 } ) ) )  ·  𝑥 ) ) )  ∈  V ) ) | 
						
							| 25 | 24 | elrab | ⊢ ( 𝐹  ∈  { 𝑓  ∈  { 𝑔  ∈  ( dom  𝑀 MblFnM 𝑆 )  ∣  ( ran  𝑔  ∈  Fin  ∧  ∀ 𝑥  ∈  ( ran  𝑔  ∖  {  0  } ) ( 𝑀 ‘ ( ◡ 𝑔  “  { 𝑥 } ) )  ∈  ( 0 [,) +∞ ) ) }  ∣  ( 𝑊  Σg  ( 𝑥  ∈  ( ran  𝑓  ∖  {  0  } )  ↦  ( ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝑓  “  { 𝑥 } ) ) )  ·  𝑥 ) ) )  ∈  V }  ↔  ( 𝐹  ∈  { 𝑔  ∈  ( dom  𝑀 MblFnM 𝑆 )  ∣  ( ran  𝑔  ∈  Fin  ∧  ∀ 𝑥  ∈  ( ran  𝑔  ∖  {  0  } ) ( 𝑀 ‘ ( ◡ 𝑔  “  { 𝑥 } ) )  ∈  ( 0 [,) +∞ ) ) }  ∧  ( 𝑊  Σg  ( 𝑥  ∈  ( ran  𝐹  ∖  {  0  } )  ↦  ( ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝐹  “  { 𝑥 } ) ) )  ·  𝑥 ) ) )  ∈  V ) ) | 
						
							| 26 | 14 25 | bitrdi | ⊢ ( 𝜑  →  ( 𝐹  ∈  dom  ( 𝑊 sitg 𝑀 )  ↔  ( 𝐹  ∈  { 𝑔  ∈  ( dom  𝑀 MblFnM 𝑆 )  ∣  ( ran  𝑔  ∈  Fin  ∧  ∀ 𝑥  ∈  ( ran  𝑔  ∖  {  0  } ) ( 𝑀 ‘ ( ◡ 𝑔  “  { 𝑥 } ) )  ∈  ( 0 [,) +∞ ) ) }  ∧  ( 𝑊  Σg  ( 𝑥  ∈  ( ran  𝐹  ∖  {  0  } )  ↦  ( ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝐹  “  { 𝑥 } ) ) )  ·  𝑥 ) ) )  ∈  V ) ) ) | 
						
							| 27 |  | ovex | ⊢ ( 𝑊  Σg  ( 𝑥  ∈  ( ran  𝐹  ∖  {  0  } )  ↦  ( ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝐹  “  { 𝑥 } ) ) )  ·  𝑥 ) ) )  ∈  V | 
						
							| 28 | 27 | biantru | ⊢ ( 𝐹  ∈  { 𝑔  ∈  ( dom  𝑀 MblFnM 𝑆 )  ∣  ( ran  𝑔  ∈  Fin  ∧  ∀ 𝑥  ∈  ( ran  𝑔  ∖  {  0  } ) ( 𝑀 ‘ ( ◡ 𝑔  “  { 𝑥 } ) )  ∈  ( 0 [,) +∞ ) ) }  ↔  ( 𝐹  ∈  { 𝑔  ∈  ( dom  𝑀 MblFnM 𝑆 )  ∣  ( ran  𝑔  ∈  Fin  ∧  ∀ 𝑥  ∈  ( ran  𝑔  ∖  {  0  } ) ( 𝑀 ‘ ( ◡ 𝑔  “  { 𝑥 } ) )  ∈  ( 0 [,) +∞ ) ) }  ∧  ( 𝑊  Σg  ( 𝑥  ∈  ( ran  𝐹  ∖  {  0  } )  ↦  ( ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝐹  “  { 𝑥 } ) ) )  ·  𝑥 ) ) )  ∈  V ) ) | 
						
							| 29 | 26 28 | bitr4di | ⊢ ( 𝜑  →  ( 𝐹  ∈  dom  ( 𝑊 sitg 𝑀 )  ↔  𝐹  ∈  { 𝑔  ∈  ( dom  𝑀 MblFnM 𝑆 )  ∣  ( ran  𝑔  ∈  Fin  ∧  ∀ 𝑥  ∈  ( ran  𝑔  ∖  {  0  } ) ( 𝑀 ‘ ( ◡ 𝑔  “  { 𝑥 } ) )  ∈  ( 0 [,) +∞ ) ) } ) ) | 
						
							| 30 |  | rneq | ⊢ ( 𝑔  =  𝐹  →  ran  𝑔  =  ran  𝐹 ) | 
						
							| 31 | 30 | eleq1d | ⊢ ( 𝑔  =  𝐹  →  ( ran  𝑔  ∈  Fin  ↔  ran  𝐹  ∈  Fin ) ) | 
						
							| 32 | 30 | difeq1d | ⊢ ( 𝑔  =  𝐹  →  ( ran  𝑔  ∖  {  0  } )  =  ( ran  𝐹  ∖  {  0  } ) ) | 
						
							| 33 |  | cnveq | ⊢ ( 𝑔  =  𝐹  →  ◡ 𝑔  =  ◡ 𝐹 ) | 
						
							| 34 | 33 | imaeq1d | ⊢ ( 𝑔  =  𝐹  →  ( ◡ 𝑔  “  { 𝑥 } )  =  ( ◡ 𝐹  “  { 𝑥 } ) ) | 
						
							| 35 | 34 | fveq2d | ⊢ ( 𝑔  =  𝐹  →  ( 𝑀 ‘ ( ◡ 𝑔  “  { 𝑥 } ) )  =  ( 𝑀 ‘ ( ◡ 𝐹  “  { 𝑥 } ) ) ) | 
						
							| 36 | 35 | eleq1d | ⊢ ( 𝑔  =  𝐹  →  ( ( 𝑀 ‘ ( ◡ 𝑔  “  { 𝑥 } ) )  ∈  ( 0 [,) +∞ )  ↔  ( 𝑀 ‘ ( ◡ 𝐹  “  { 𝑥 } ) )  ∈  ( 0 [,) +∞ ) ) ) | 
						
							| 37 | 32 36 | raleqbidv | ⊢ ( 𝑔  =  𝐹  →  ( ∀ 𝑥  ∈  ( ran  𝑔  ∖  {  0  } ) ( 𝑀 ‘ ( ◡ 𝑔  “  { 𝑥 } ) )  ∈  ( 0 [,) +∞ )  ↔  ∀ 𝑥  ∈  ( ran  𝐹  ∖  {  0  } ) ( 𝑀 ‘ ( ◡ 𝐹  “  { 𝑥 } ) )  ∈  ( 0 [,) +∞ ) ) ) | 
						
							| 38 | 31 37 | anbi12d | ⊢ ( 𝑔  =  𝐹  →  ( ( ran  𝑔  ∈  Fin  ∧  ∀ 𝑥  ∈  ( ran  𝑔  ∖  {  0  } ) ( 𝑀 ‘ ( ◡ 𝑔  “  { 𝑥 } ) )  ∈  ( 0 [,) +∞ ) )  ↔  ( ran  𝐹  ∈  Fin  ∧  ∀ 𝑥  ∈  ( ran  𝐹  ∖  {  0  } ) ( 𝑀 ‘ ( ◡ 𝐹  “  { 𝑥 } ) )  ∈  ( 0 [,) +∞ ) ) ) ) | 
						
							| 39 | 38 | elrab | ⊢ ( 𝐹  ∈  { 𝑔  ∈  ( dom  𝑀 MblFnM 𝑆 )  ∣  ( ran  𝑔  ∈  Fin  ∧  ∀ 𝑥  ∈  ( ran  𝑔  ∖  {  0  } ) ( 𝑀 ‘ ( ◡ 𝑔  “  { 𝑥 } ) )  ∈  ( 0 [,) +∞ ) ) }  ↔  ( 𝐹  ∈  ( dom  𝑀 MblFnM 𝑆 )  ∧  ( ran  𝐹  ∈  Fin  ∧  ∀ 𝑥  ∈  ( ran  𝐹  ∖  {  0  } ) ( 𝑀 ‘ ( ◡ 𝐹  “  { 𝑥 } ) )  ∈  ( 0 [,) +∞ ) ) ) ) | 
						
							| 40 | 29 39 | bitrdi | ⊢ ( 𝜑  →  ( 𝐹  ∈  dom  ( 𝑊 sitg 𝑀 )  ↔  ( 𝐹  ∈  ( dom  𝑀 MblFnM 𝑆 )  ∧  ( ran  𝐹  ∈  Fin  ∧  ∀ 𝑥  ∈  ( ran  𝐹  ∖  {  0  } ) ( 𝑀 ‘ ( ◡ 𝐹  “  { 𝑥 } ) )  ∈  ( 0 [,) +∞ ) ) ) ) ) | 
						
							| 41 |  | 3anass | ⊢ ( ( 𝐹  ∈  ( dom  𝑀 MblFnM 𝑆 )  ∧  ran  𝐹  ∈  Fin  ∧  ∀ 𝑥  ∈  ( ran  𝐹  ∖  {  0  } ) ( 𝑀 ‘ ( ◡ 𝐹  “  { 𝑥 } ) )  ∈  ( 0 [,) +∞ ) )  ↔  ( 𝐹  ∈  ( dom  𝑀 MblFnM 𝑆 )  ∧  ( ran  𝐹  ∈  Fin  ∧  ∀ 𝑥  ∈  ( ran  𝐹  ∖  {  0  } ) ( 𝑀 ‘ ( ◡ 𝐹  “  { 𝑥 } ) )  ∈  ( 0 [,) +∞ ) ) ) ) | 
						
							| 42 | 40 41 | bitr4di | ⊢ ( 𝜑  →  ( 𝐹  ∈  dom  ( 𝑊 sitg 𝑀 )  ↔  ( 𝐹  ∈  ( dom  𝑀 MblFnM 𝑆 )  ∧  ran  𝐹  ∈  Fin  ∧  ∀ 𝑥  ∈  ( ran  𝐹  ∖  {  0  } ) ( 𝑀 ‘ ( ◡ 𝐹  “  { 𝑥 } ) )  ∈  ( 0 [,) +∞ ) ) ) ) |