| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sitgval.b | ⊢ 𝐵  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | sitgval.j | ⊢ 𝐽  =  ( TopOpen ‘ 𝑊 ) | 
						
							| 3 |  | sitgval.s | ⊢ 𝑆  =  ( sigaGen ‘ 𝐽 ) | 
						
							| 4 |  | sitgval.0 | ⊢  0   =  ( 0g ‘ 𝑊 ) | 
						
							| 5 |  | sitgval.x | ⊢  ·   =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 6 |  | sitgval.h | ⊢ 𝐻  =  ( ℝHom ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 7 |  | sitgval.1 | ⊢ ( 𝜑  →  𝑊  ∈  𝑉 ) | 
						
							| 8 |  | sitgval.2 | ⊢ ( 𝜑  →  𝑀  ∈  ∪  ran  measures ) | 
						
							| 9 | 7 | elexd | ⊢ ( 𝜑  →  𝑊  ∈  V ) | 
						
							| 10 |  | 2fveq3 | ⊢ ( 𝑤  =  𝑊  →  ( sigaGen ‘ ( TopOpen ‘ 𝑤 ) )  =  ( sigaGen ‘ ( TopOpen ‘ 𝑊 ) ) ) | 
						
							| 11 | 2 | fveq2i | ⊢ ( sigaGen ‘ 𝐽 )  =  ( sigaGen ‘ ( TopOpen ‘ 𝑊 ) ) | 
						
							| 12 | 3 11 | eqtri | ⊢ 𝑆  =  ( sigaGen ‘ ( TopOpen ‘ 𝑊 ) ) | 
						
							| 13 | 10 12 | eqtr4di | ⊢ ( 𝑤  =  𝑊  →  ( sigaGen ‘ ( TopOpen ‘ 𝑤 ) )  =  𝑆 ) | 
						
							| 14 | 13 | oveq2d | ⊢ ( 𝑤  =  𝑊  →  ( dom  𝑚 MblFnM ( sigaGen ‘ ( TopOpen ‘ 𝑤 ) ) )  =  ( dom  𝑚 MblFnM 𝑆 ) ) | 
						
							| 15 |  | fveq2 | ⊢ ( 𝑤  =  𝑊  →  ( 0g ‘ 𝑤 )  =  ( 0g ‘ 𝑊 ) ) | 
						
							| 16 | 15 4 | eqtr4di | ⊢ ( 𝑤  =  𝑊  →  ( 0g ‘ 𝑤 )  =   0  ) | 
						
							| 17 | 16 | sneqd | ⊢ ( 𝑤  =  𝑊  →  { ( 0g ‘ 𝑤 ) }  =  {  0  } ) | 
						
							| 18 | 17 | difeq2d | ⊢ ( 𝑤  =  𝑊  →  ( ran  𝑔  ∖  { ( 0g ‘ 𝑤 ) } )  =  ( ran  𝑔  ∖  {  0  } ) ) | 
						
							| 19 | 18 | raleqdv | ⊢ ( 𝑤  =  𝑊  →  ( ∀ 𝑥  ∈  ( ran  𝑔  ∖  { ( 0g ‘ 𝑤 ) } ) ( 𝑚 ‘ ( ◡ 𝑔  “  { 𝑥 } ) )  ∈  ( 0 [,) +∞ )  ↔  ∀ 𝑥  ∈  ( ran  𝑔  ∖  {  0  } ) ( 𝑚 ‘ ( ◡ 𝑔  “  { 𝑥 } ) )  ∈  ( 0 [,) +∞ ) ) ) | 
						
							| 20 | 19 | anbi2d | ⊢ ( 𝑤  =  𝑊  →  ( ( ran  𝑔  ∈  Fin  ∧  ∀ 𝑥  ∈  ( ran  𝑔  ∖  { ( 0g ‘ 𝑤 ) } ) ( 𝑚 ‘ ( ◡ 𝑔  “  { 𝑥 } ) )  ∈  ( 0 [,) +∞ ) )  ↔  ( ran  𝑔  ∈  Fin  ∧  ∀ 𝑥  ∈  ( ran  𝑔  ∖  {  0  } ) ( 𝑚 ‘ ( ◡ 𝑔  “  { 𝑥 } ) )  ∈  ( 0 [,) +∞ ) ) ) ) | 
						
							| 21 | 14 20 | rabeqbidv | ⊢ ( 𝑤  =  𝑊  →  { 𝑔  ∈  ( dom  𝑚 MblFnM ( sigaGen ‘ ( TopOpen ‘ 𝑤 ) ) )  ∣  ( ran  𝑔  ∈  Fin  ∧  ∀ 𝑥  ∈  ( ran  𝑔  ∖  { ( 0g ‘ 𝑤 ) } ) ( 𝑚 ‘ ( ◡ 𝑔  “  { 𝑥 } ) )  ∈  ( 0 [,) +∞ ) ) }  =  { 𝑔  ∈  ( dom  𝑚 MblFnM 𝑆 )  ∣  ( ran  𝑔  ∈  Fin  ∧  ∀ 𝑥  ∈  ( ran  𝑔  ∖  {  0  } ) ( 𝑚 ‘ ( ◡ 𝑔  “  { 𝑥 } ) )  ∈  ( 0 [,) +∞ ) ) } ) | 
						
							| 22 |  | id | ⊢ ( 𝑤  =  𝑊  →  𝑤  =  𝑊 ) | 
						
							| 23 | 17 | difeq2d | ⊢ ( 𝑤  =  𝑊  →  ( ran  𝑓  ∖  { ( 0g ‘ 𝑤 ) } )  =  ( ran  𝑓  ∖  {  0  } ) ) | 
						
							| 24 |  | fveq2 | ⊢ ( 𝑤  =  𝑊  →  (  ·𝑠  ‘ 𝑤 )  =  (  ·𝑠  ‘ 𝑊 ) ) | 
						
							| 25 | 24 5 | eqtr4di | ⊢ ( 𝑤  =  𝑊  →  (  ·𝑠  ‘ 𝑤 )  =   ·  ) | 
						
							| 26 |  | 2fveq3 | ⊢ ( 𝑤  =  𝑊  →  ( ℝHom ‘ ( Scalar ‘ 𝑤 ) )  =  ( ℝHom ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 27 | 26 6 | eqtr4di | ⊢ ( 𝑤  =  𝑊  →  ( ℝHom ‘ ( Scalar ‘ 𝑤 ) )  =  𝐻 ) | 
						
							| 28 | 27 | fveq1d | ⊢ ( 𝑤  =  𝑊  →  ( ( ℝHom ‘ ( Scalar ‘ 𝑤 ) ) ‘ ( 𝑚 ‘ ( ◡ 𝑓  “  { 𝑥 } ) ) )  =  ( 𝐻 ‘ ( 𝑚 ‘ ( ◡ 𝑓  “  { 𝑥 } ) ) ) ) | 
						
							| 29 |  | eqidd | ⊢ ( 𝑤  =  𝑊  →  𝑥  =  𝑥 ) | 
						
							| 30 | 25 28 29 | oveq123d | ⊢ ( 𝑤  =  𝑊  →  ( ( ( ℝHom ‘ ( Scalar ‘ 𝑤 ) ) ‘ ( 𝑚 ‘ ( ◡ 𝑓  “  { 𝑥 } ) ) ) (  ·𝑠  ‘ 𝑤 ) 𝑥 )  =  ( ( 𝐻 ‘ ( 𝑚 ‘ ( ◡ 𝑓  “  { 𝑥 } ) ) )  ·  𝑥 ) ) | 
						
							| 31 | 23 30 | mpteq12dv | ⊢ ( 𝑤  =  𝑊  →  ( 𝑥  ∈  ( ran  𝑓  ∖  { ( 0g ‘ 𝑤 ) } )  ↦  ( ( ( ℝHom ‘ ( Scalar ‘ 𝑤 ) ) ‘ ( 𝑚 ‘ ( ◡ 𝑓  “  { 𝑥 } ) ) ) (  ·𝑠  ‘ 𝑤 ) 𝑥 ) )  =  ( 𝑥  ∈  ( ran  𝑓  ∖  {  0  } )  ↦  ( ( 𝐻 ‘ ( 𝑚 ‘ ( ◡ 𝑓  “  { 𝑥 } ) ) )  ·  𝑥 ) ) ) | 
						
							| 32 | 22 31 | oveq12d | ⊢ ( 𝑤  =  𝑊  →  ( 𝑤  Σg  ( 𝑥  ∈  ( ran  𝑓  ∖  { ( 0g ‘ 𝑤 ) } )  ↦  ( ( ( ℝHom ‘ ( Scalar ‘ 𝑤 ) ) ‘ ( 𝑚 ‘ ( ◡ 𝑓  “  { 𝑥 } ) ) ) (  ·𝑠  ‘ 𝑤 ) 𝑥 ) ) )  =  ( 𝑊  Σg  ( 𝑥  ∈  ( ran  𝑓  ∖  {  0  } )  ↦  ( ( 𝐻 ‘ ( 𝑚 ‘ ( ◡ 𝑓  “  { 𝑥 } ) ) )  ·  𝑥 ) ) ) ) | 
						
							| 33 | 21 32 | mpteq12dv | ⊢ ( 𝑤  =  𝑊  →  ( 𝑓  ∈  { 𝑔  ∈  ( dom  𝑚 MblFnM ( sigaGen ‘ ( TopOpen ‘ 𝑤 ) ) )  ∣  ( ran  𝑔  ∈  Fin  ∧  ∀ 𝑥  ∈  ( ran  𝑔  ∖  { ( 0g ‘ 𝑤 ) } ) ( 𝑚 ‘ ( ◡ 𝑔  “  { 𝑥 } ) )  ∈  ( 0 [,) +∞ ) ) }  ↦  ( 𝑤  Σg  ( 𝑥  ∈  ( ran  𝑓  ∖  { ( 0g ‘ 𝑤 ) } )  ↦  ( ( ( ℝHom ‘ ( Scalar ‘ 𝑤 ) ) ‘ ( 𝑚 ‘ ( ◡ 𝑓  “  { 𝑥 } ) ) ) (  ·𝑠  ‘ 𝑤 ) 𝑥 ) ) ) )  =  ( 𝑓  ∈  { 𝑔  ∈  ( dom  𝑚 MblFnM 𝑆 )  ∣  ( ran  𝑔  ∈  Fin  ∧  ∀ 𝑥  ∈  ( ran  𝑔  ∖  {  0  } ) ( 𝑚 ‘ ( ◡ 𝑔  “  { 𝑥 } ) )  ∈  ( 0 [,) +∞ ) ) }  ↦  ( 𝑊  Σg  ( 𝑥  ∈  ( ran  𝑓  ∖  {  0  } )  ↦  ( ( 𝐻 ‘ ( 𝑚 ‘ ( ◡ 𝑓  “  { 𝑥 } ) ) )  ·  𝑥 ) ) ) ) ) | 
						
							| 34 |  | dmeq | ⊢ ( 𝑚  =  𝑀  →  dom  𝑚  =  dom  𝑀 ) | 
						
							| 35 | 34 | oveq1d | ⊢ ( 𝑚  =  𝑀  →  ( dom  𝑚 MblFnM 𝑆 )  =  ( dom  𝑀 MblFnM 𝑆 ) ) | 
						
							| 36 |  | fveq1 | ⊢ ( 𝑚  =  𝑀  →  ( 𝑚 ‘ ( ◡ 𝑔  “  { 𝑥 } ) )  =  ( 𝑀 ‘ ( ◡ 𝑔  “  { 𝑥 } ) ) ) | 
						
							| 37 | 36 | eleq1d | ⊢ ( 𝑚  =  𝑀  →  ( ( 𝑚 ‘ ( ◡ 𝑔  “  { 𝑥 } ) )  ∈  ( 0 [,) +∞ )  ↔  ( 𝑀 ‘ ( ◡ 𝑔  “  { 𝑥 } ) )  ∈  ( 0 [,) +∞ ) ) ) | 
						
							| 38 | 37 | ralbidv | ⊢ ( 𝑚  =  𝑀  →  ( ∀ 𝑥  ∈  ( ran  𝑔  ∖  {  0  } ) ( 𝑚 ‘ ( ◡ 𝑔  “  { 𝑥 } ) )  ∈  ( 0 [,) +∞ )  ↔  ∀ 𝑥  ∈  ( ran  𝑔  ∖  {  0  } ) ( 𝑀 ‘ ( ◡ 𝑔  “  { 𝑥 } ) )  ∈  ( 0 [,) +∞ ) ) ) | 
						
							| 39 | 38 | anbi2d | ⊢ ( 𝑚  =  𝑀  →  ( ( ran  𝑔  ∈  Fin  ∧  ∀ 𝑥  ∈  ( ran  𝑔  ∖  {  0  } ) ( 𝑚 ‘ ( ◡ 𝑔  “  { 𝑥 } ) )  ∈  ( 0 [,) +∞ ) )  ↔  ( ran  𝑔  ∈  Fin  ∧  ∀ 𝑥  ∈  ( ran  𝑔  ∖  {  0  } ) ( 𝑀 ‘ ( ◡ 𝑔  “  { 𝑥 } ) )  ∈  ( 0 [,) +∞ ) ) ) ) | 
						
							| 40 | 35 39 | rabeqbidv | ⊢ ( 𝑚  =  𝑀  →  { 𝑔  ∈  ( dom  𝑚 MblFnM 𝑆 )  ∣  ( ran  𝑔  ∈  Fin  ∧  ∀ 𝑥  ∈  ( ran  𝑔  ∖  {  0  } ) ( 𝑚 ‘ ( ◡ 𝑔  “  { 𝑥 } ) )  ∈  ( 0 [,) +∞ ) ) }  =  { 𝑔  ∈  ( dom  𝑀 MblFnM 𝑆 )  ∣  ( ran  𝑔  ∈  Fin  ∧  ∀ 𝑥  ∈  ( ran  𝑔  ∖  {  0  } ) ( 𝑀 ‘ ( ◡ 𝑔  “  { 𝑥 } ) )  ∈  ( 0 [,) +∞ ) ) } ) | 
						
							| 41 |  | simpl | ⊢ ( ( 𝑚  =  𝑀  ∧  𝑥  ∈  ( ran  𝑓  ∖  {  0  } ) )  →  𝑚  =  𝑀 ) | 
						
							| 42 | 41 | fveq1d | ⊢ ( ( 𝑚  =  𝑀  ∧  𝑥  ∈  ( ran  𝑓  ∖  {  0  } ) )  →  ( 𝑚 ‘ ( ◡ 𝑓  “  { 𝑥 } ) )  =  ( 𝑀 ‘ ( ◡ 𝑓  “  { 𝑥 } ) ) ) | 
						
							| 43 | 42 | fveq2d | ⊢ ( ( 𝑚  =  𝑀  ∧  𝑥  ∈  ( ran  𝑓  ∖  {  0  } ) )  →  ( 𝐻 ‘ ( 𝑚 ‘ ( ◡ 𝑓  “  { 𝑥 } ) ) )  =  ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝑓  “  { 𝑥 } ) ) ) ) | 
						
							| 44 | 43 | oveq1d | ⊢ ( ( 𝑚  =  𝑀  ∧  𝑥  ∈  ( ran  𝑓  ∖  {  0  } ) )  →  ( ( 𝐻 ‘ ( 𝑚 ‘ ( ◡ 𝑓  “  { 𝑥 } ) ) )  ·  𝑥 )  =  ( ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝑓  “  { 𝑥 } ) ) )  ·  𝑥 ) ) | 
						
							| 45 | 44 | mpteq2dva | ⊢ ( 𝑚  =  𝑀  →  ( 𝑥  ∈  ( ran  𝑓  ∖  {  0  } )  ↦  ( ( 𝐻 ‘ ( 𝑚 ‘ ( ◡ 𝑓  “  { 𝑥 } ) ) )  ·  𝑥 ) )  =  ( 𝑥  ∈  ( ran  𝑓  ∖  {  0  } )  ↦  ( ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝑓  “  { 𝑥 } ) ) )  ·  𝑥 ) ) ) | 
						
							| 46 | 45 | oveq2d | ⊢ ( 𝑚  =  𝑀  →  ( 𝑊  Σg  ( 𝑥  ∈  ( ran  𝑓  ∖  {  0  } )  ↦  ( ( 𝐻 ‘ ( 𝑚 ‘ ( ◡ 𝑓  “  { 𝑥 } ) ) )  ·  𝑥 ) ) )  =  ( 𝑊  Σg  ( 𝑥  ∈  ( ran  𝑓  ∖  {  0  } )  ↦  ( ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝑓  “  { 𝑥 } ) ) )  ·  𝑥 ) ) ) ) | 
						
							| 47 | 40 46 | mpteq12dv | ⊢ ( 𝑚  =  𝑀  →  ( 𝑓  ∈  { 𝑔  ∈  ( dom  𝑚 MblFnM 𝑆 )  ∣  ( ran  𝑔  ∈  Fin  ∧  ∀ 𝑥  ∈  ( ran  𝑔  ∖  {  0  } ) ( 𝑚 ‘ ( ◡ 𝑔  “  { 𝑥 } ) )  ∈  ( 0 [,) +∞ ) ) }  ↦  ( 𝑊  Σg  ( 𝑥  ∈  ( ran  𝑓  ∖  {  0  } )  ↦  ( ( 𝐻 ‘ ( 𝑚 ‘ ( ◡ 𝑓  “  { 𝑥 } ) ) )  ·  𝑥 ) ) ) )  =  ( 𝑓  ∈  { 𝑔  ∈  ( dom  𝑀 MblFnM 𝑆 )  ∣  ( ran  𝑔  ∈  Fin  ∧  ∀ 𝑥  ∈  ( ran  𝑔  ∖  {  0  } ) ( 𝑀 ‘ ( ◡ 𝑔  “  { 𝑥 } ) )  ∈  ( 0 [,) +∞ ) ) }  ↦  ( 𝑊  Σg  ( 𝑥  ∈  ( ran  𝑓  ∖  {  0  } )  ↦  ( ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝑓  “  { 𝑥 } ) ) )  ·  𝑥 ) ) ) ) ) | 
						
							| 48 |  | df-sitg | ⊢ sitg  =  ( 𝑤  ∈  V ,  𝑚  ∈  ∪  ran  measures  ↦  ( 𝑓  ∈  { 𝑔  ∈  ( dom  𝑚 MblFnM ( sigaGen ‘ ( TopOpen ‘ 𝑤 ) ) )  ∣  ( ran  𝑔  ∈  Fin  ∧  ∀ 𝑥  ∈  ( ran  𝑔  ∖  { ( 0g ‘ 𝑤 ) } ) ( 𝑚 ‘ ( ◡ 𝑔  “  { 𝑥 } ) )  ∈  ( 0 [,) +∞ ) ) }  ↦  ( 𝑤  Σg  ( 𝑥  ∈  ( ran  𝑓  ∖  { ( 0g ‘ 𝑤 ) } )  ↦  ( ( ( ℝHom ‘ ( Scalar ‘ 𝑤 ) ) ‘ ( 𝑚 ‘ ( ◡ 𝑓  “  { 𝑥 } ) ) ) (  ·𝑠  ‘ 𝑤 ) 𝑥 ) ) ) ) ) | 
						
							| 49 |  | ovex | ⊢ ( dom  𝑀 MblFnM 𝑆 )  ∈  V | 
						
							| 50 | 49 | mptrabex | ⊢ ( 𝑓  ∈  { 𝑔  ∈  ( dom  𝑀 MblFnM 𝑆 )  ∣  ( ran  𝑔  ∈  Fin  ∧  ∀ 𝑥  ∈  ( ran  𝑔  ∖  {  0  } ) ( 𝑀 ‘ ( ◡ 𝑔  “  { 𝑥 } ) )  ∈  ( 0 [,) +∞ ) ) }  ↦  ( 𝑊  Σg  ( 𝑥  ∈  ( ran  𝑓  ∖  {  0  } )  ↦  ( ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝑓  “  { 𝑥 } ) ) )  ·  𝑥 ) ) ) )  ∈  V | 
						
							| 51 | 33 47 48 50 | ovmpo | ⊢ ( ( 𝑊  ∈  V  ∧  𝑀  ∈  ∪  ran  measures )  →  ( 𝑊 sitg 𝑀 )  =  ( 𝑓  ∈  { 𝑔  ∈  ( dom  𝑀 MblFnM 𝑆 )  ∣  ( ran  𝑔  ∈  Fin  ∧  ∀ 𝑥  ∈  ( ran  𝑔  ∖  {  0  } ) ( 𝑀 ‘ ( ◡ 𝑔  “  { 𝑥 } ) )  ∈  ( 0 [,) +∞ ) ) }  ↦  ( 𝑊  Σg  ( 𝑥  ∈  ( ran  𝑓  ∖  {  0  } )  ↦  ( ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝑓  “  { 𝑥 } ) ) )  ·  𝑥 ) ) ) ) ) | 
						
							| 52 | 9 8 51 | syl2anc | ⊢ ( 𝜑  →  ( 𝑊 sitg 𝑀 )  =  ( 𝑓  ∈  { 𝑔  ∈  ( dom  𝑀 MblFnM 𝑆 )  ∣  ( ran  𝑔  ∈  Fin  ∧  ∀ 𝑥  ∈  ( ran  𝑔  ∖  {  0  } ) ( 𝑀 ‘ ( ◡ 𝑔  “  { 𝑥 } ) )  ∈  ( 0 [,) +∞ ) ) }  ↦  ( 𝑊  Σg  ( 𝑥  ∈  ( ran  𝑓  ∖  {  0  } )  ↦  ( ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝑓  “  { 𝑥 } ) ) )  ·  𝑥 ) ) ) ) ) |