| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sitgval.b |
|
| 2 |
|
sitgval.j |
|
| 3 |
|
sitgval.s |
|
| 4 |
|
sitgval.0 |
|
| 5 |
|
sitgval.x |
|
| 6 |
|
sitgval.h |
|
| 7 |
|
sitgval.1 |
|
| 8 |
|
sitgval.2 |
|
| 9 |
7
|
elexd |
|
| 10 |
|
2fveq3 |
|
| 11 |
2
|
fveq2i |
|
| 12 |
3 11
|
eqtri |
|
| 13 |
10 12
|
eqtr4di |
|
| 14 |
13
|
oveq2d |
|
| 15 |
|
fveq2 |
|
| 16 |
15 4
|
eqtr4di |
|
| 17 |
16
|
sneqd |
|
| 18 |
17
|
difeq2d |
|
| 19 |
18
|
raleqdv |
|
| 20 |
19
|
anbi2d |
|
| 21 |
14 20
|
rabeqbidv |
|
| 22 |
|
id |
|
| 23 |
17
|
difeq2d |
|
| 24 |
|
fveq2 |
|
| 25 |
24 5
|
eqtr4di |
|
| 26 |
|
2fveq3 |
|
| 27 |
26 6
|
eqtr4di |
|
| 28 |
27
|
fveq1d |
|
| 29 |
|
eqidd |
|
| 30 |
25 28 29
|
oveq123d |
|
| 31 |
23 30
|
mpteq12dv |
|
| 32 |
22 31
|
oveq12d |
|
| 33 |
21 32
|
mpteq12dv |
|
| 34 |
|
dmeq |
|
| 35 |
34
|
oveq1d |
|
| 36 |
|
fveq1 |
|
| 37 |
36
|
eleq1d |
|
| 38 |
37
|
ralbidv |
|
| 39 |
38
|
anbi2d |
|
| 40 |
35 39
|
rabeqbidv |
|
| 41 |
|
simpl |
|
| 42 |
41
|
fveq1d |
|
| 43 |
42
|
fveq2d |
|
| 44 |
43
|
oveq1d |
|
| 45 |
44
|
mpteq2dva |
|
| 46 |
45
|
oveq2d |
|
| 47 |
40 46
|
mpteq12dv |
|
| 48 |
|
df-sitg |
|
| 49 |
|
ovex |
|
| 50 |
49
|
mptrabex |
|
| 51 |
33 47 48 50
|
ovmpo |
|
| 52 |
9 8 51
|
syl2anc |
|