Metamath Proof Explorer


Theorem mbfmcst

Description: A constant function is measurable. Cf. mbfconst . (Contributed by Thierry Arnoux, 26-Jan-2017)

Ref Expression
Hypotheses mbfmcst.1 ( 𝜑𝑆 ran sigAlgebra )
mbfmcst.2 ( 𝜑𝑇 ran sigAlgebra )
mbfmcst.3 ( 𝜑𝐹 = ( 𝑥 𝑆𝐴 ) )
mbfmcst.4 ( 𝜑𝐴 𝑇 )
Assertion mbfmcst ( 𝜑𝐹 ∈ ( 𝑆 MblFnM 𝑇 ) )

Proof

Step Hyp Ref Expression
1 mbfmcst.1 ( 𝜑𝑆 ran sigAlgebra )
2 mbfmcst.2 ( 𝜑𝑇 ran sigAlgebra )
3 mbfmcst.3 ( 𝜑𝐹 = ( 𝑥 𝑆𝐴 ) )
4 mbfmcst.4 ( 𝜑𝐴 𝑇 )
5 4 adantr ( ( 𝜑𝑥 𝑆 ) → 𝐴 𝑇 )
6 3 5 fmpt3d ( 𝜑𝐹 : 𝑆 𝑇 )
7 unielsiga ( 𝑇 ran sigAlgebra → 𝑇𝑇 )
8 2 7 syl ( 𝜑 𝑇𝑇 )
9 unielsiga ( 𝑆 ran sigAlgebra → 𝑆𝑆 )
10 1 9 syl ( 𝜑 𝑆𝑆 )
11 8 10 elmapd ( 𝜑 → ( 𝐹 ∈ ( 𝑇m 𝑆 ) ↔ 𝐹 : 𝑆 𝑇 ) )
12 6 11 mpbird ( 𝜑𝐹 ∈ ( 𝑇m 𝑆 ) )
13 fconstmpt ( 𝑆 × { 𝐴 } ) = ( 𝑥 𝑆𝐴 )
14 13 cnveqi ( 𝑆 × { 𝐴 } ) = ( 𝑥 𝑆𝐴 )
15 cnvxp ( 𝑆 × { 𝐴 } ) = ( { 𝐴 } × 𝑆 )
16 14 15 eqtr3i ( 𝑥 𝑆𝐴 ) = ( { 𝐴 } × 𝑆 )
17 16 imaeq1i ( ( 𝑥 𝑆𝐴 ) “ 𝑦 ) = ( ( { 𝐴 } × 𝑆 ) “ 𝑦 )
18 df-ima ( ( { 𝐴 } × 𝑆 ) “ 𝑦 ) = ran ( ( { 𝐴 } × 𝑆 ) ↾ 𝑦 )
19 df-rn ran ( ( { 𝐴 } × 𝑆 ) ↾ 𝑦 ) = dom ( ( { 𝐴 } × 𝑆 ) ↾ 𝑦 )
20 17 18 19 3eqtri ( ( 𝑥 𝑆𝐴 ) “ 𝑦 ) = dom ( ( { 𝐴 } × 𝑆 ) ↾ 𝑦 )
21 df-res ( ( { 𝐴 } × 𝑆 ) ↾ 𝑦 ) = ( ( { 𝐴 } × 𝑆 ) ∩ ( 𝑦 × V ) )
22 inxp ( ( { 𝐴 } × 𝑆 ) ∩ ( 𝑦 × V ) ) = ( ( { 𝐴 } ∩ 𝑦 ) × ( 𝑆 ∩ V ) )
23 inv1 ( 𝑆 ∩ V ) = 𝑆
24 23 xpeq2i ( ( { 𝐴 } ∩ 𝑦 ) × ( 𝑆 ∩ V ) ) = ( ( { 𝐴 } ∩ 𝑦 ) × 𝑆 )
25 21 22 24 3eqtri ( ( { 𝐴 } × 𝑆 ) ↾ 𝑦 ) = ( ( { 𝐴 } ∩ 𝑦 ) × 𝑆 )
26 25 cnveqi ( ( { 𝐴 } × 𝑆 ) ↾ 𝑦 ) = ( ( { 𝐴 } ∩ 𝑦 ) × 𝑆 )
27 26 dmeqi dom ( ( { 𝐴 } × 𝑆 ) ↾ 𝑦 ) = dom ( ( { 𝐴 } ∩ 𝑦 ) × 𝑆 )
28 cnvxp ( ( { 𝐴 } ∩ 𝑦 ) × 𝑆 ) = ( 𝑆 × ( { 𝐴 } ∩ 𝑦 ) )
29 28 dmeqi dom ( ( { 𝐴 } ∩ 𝑦 ) × 𝑆 ) = dom ( 𝑆 × ( { 𝐴 } ∩ 𝑦 ) )
30 20 27 29 3eqtri ( ( 𝑥 𝑆𝐴 ) “ 𝑦 ) = dom ( 𝑆 × ( { 𝐴 } ∩ 𝑦 ) )
31 xpeq2 ( ( { 𝐴 } ∩ 𝑦 ) = ∅ → ( 𝑆 × ( { 𝐴 } ∩ 𝑦 ) ) = ( 𝑆 × ∅ ) )
32 xp0 ( 𝑆 × ∅ ) = ∅
33 31 32 eqtrdi ( ( { 𝐴 } ∩ 𝑦 ) = ∅ → ( 𝑆 × ( { 𝐴 } ∩ 𝑦 ) ) = ∅ )
34 33 dmeqd ( ( { 𝐴 } ∩ 𝑦 ) = ∅ → dom ( 𝑆 × ( { 𝐴 } ∩ 𝑦 ) ) = dom ∅ )
35 dm0 dom ∅ = ∅
36 34 35 eqtrdi ( ( { 𝐴 } ∩ 𝑦 ) = ∅ → dom ( 𝑆 × ( { 𝐴 } ∩ 𝑦 ) ) = ∅ )
37 36 adantl ( ( 𝜑 ∧ ( { 𝐴 } ∩ 𝑦 ) = ∅ ) → dom ( 𝑆 × ( { 𝐴 } ∩ 𝑦 ) ) = ∅ )
38 0elsiga ( 𝑆 ran sigAlgebra → ∅ ∈ 𝑆 )
39 1 38 syl ( 𝜑 → ∅ ∈ 𝑆 )
40 39 adantr ( ( 𝜑 ∧ ( { 𝐴 } ∩ 𝑦 ) = ∅ ) → ∅ ∈ 𝑆 )
41 37 40 eqeltrd ( ( 𝜑 ∧ ( { 𝐴 } ∩ 𝑦 ) = ∅ ) → dom ( 𝑆 × ( { 𝐴 } ∩ 𝑦 ) ) ∈ 𝑆 )
42 30 41 eqeltrid ( ( 𝜑 ∧ ( { 𝐴 } ∩ 𝑦 ) = ∅ ) → ( ( 𝑥 𝑆𝐴 ) “ 𝑦 ) ∈ 𝑆 )
43 dmxp ( ( { 𝐴 } ∩ 𝑦 ) ≠ ∅ → dom ( 𝑆 × ( { 𝐴 } ∩ 𝑦 ) ) = 𝑆 )
44 43 adantl ( ( 𝜑 ∧ ( { 𝐴 } ∩ 𝑦 ) ≠ ∅ ) → dom ( 𝑆 × ( { 𝐴 } ∩ 𝑦 ) ) = 𝑆 )
45 10 adantr ( ( 𝜑 ∧ ( { 𝐴 } ∩ 𝑦 ) ≠ ∅ ) → 𝑆𝑆 )
46 44 45 eqeltrd ( ( 𝜑 ∧ ( { 𝐴 } ∩ 𝑦 ) ≠ ∅ ) → dom ( 𝑆 × ( { 𝐴 } ∩ 𝑦 ) ) ∈ 𝑆 )
47 30 46 eqeltrid ( ( 𝜑 ∧ ( { 𝐴 } ∩ 𝑦 ) ≠ ∅ ) → ( ( 𝑥 𝑆𝐴 ) “ 𝑦 ) ∈ 𝑆 )
48 42 47 pm2.61dane ( 𝜑 → ( ( 𝑥 𝑆𝐴 ) “ 𝑦 ) ∈ 𝑆 )
49 48 ralrimivw ( 𝜑 → ∀ 𝑦𝑇 ( ( 𝑥 𝑆𝐴 ) “ 𝑦 ) ∈ 𝑆 )
50 3 cnveqd ( 𝜑 𝐹 = ( 𝑥 𝑆𝐴 ) )
51 50 imaeq1d ( 𝜑 → ( 𝐹𝑦 ) = ( ( 𝑥 𝑆𝐴 ) “ 𝑦 ) )
52 51 eleq1d ( 𝜑 → ( ( 𝐹𝑦 ) ∈ 𝑆 ↔ ( ( 𝑥 𝑆𝐴 ) “ 𝑦 ) ∈ 𝑆 ) )
53 52 ralbidv ( 𝜑 → ( ∀ 𝑦𝑇 ( 𝐹𝑦 ) ∈ 𝑆 ↔ ∀ 𝑦𝑇 ( ( 𝑥 𝑆𝐴 ) “ 𝑦 ) ∈ 𝑆 ) )
54 49 53 mpbird ( 𝜑 → ∀ 𝑦𝑇 ( 𝐹𝑦 ) ∈ 𝑆 )
55 1 2 ismbfm ( 𝜑 → ( 𝐹 ∈ ( 𝑆 MblFnM 𝑇 ) ↔ ( 𝐹 ∈ ( 𝑇m 𝑆 ) ∧ ∀ 𝑦𝑇 ( 𝐹𝑦 ) ∈ 𝑆 ) ) )
56 12 54 55 mpbir2and ( 𝜑𝐹 ∈ ( 𝑆 MblFnM 𝑇 ) )