Step |
Hyp |
Ref |
Expression |
1 |
|
mbfmcst.1 |
⊢ ( 𝜑 → 𝑆 ∈ ∪ ran sigAlgebra ) |
2 |
|
mbfmcst.2 |
⊢ ( 𝜑 → 𝑇 ∈ ∪ ran sigAlgebra ) |
3 |
|
mbfmcst.3 |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ ∪ 𝑆 ↦ 𝐴 ) ) |
4 |
|
mbfmcst.4 |
⊢ ( 𝜑 → 𝐴 ∈ ∪ 𝑇 ) |
5 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝑆 ) → 𝐴 ∈ ∪ 𝑇 ) |
6 |
3 5
|
fmpt3d |
⊢ ( 𝜑 → 𝐹 : ∪ 𝑆 ⟶ ∪ 𝑇 ) |
7 |
|
unielsiga |
⊢ ( 𝑇 ∈ ∪ ran sigAlgebra → ∪ 𝑇 ∈ 𝑇 ) |
8 |
2 7
|
syl |
⊢ ( 𝜑 → ∪ 𝑇 ∈ 𝑇 ) |
9 |
|
unielsiga |
⊢ ( 𝑆 ∈ ∪ ran sigAlgebra → ∪ 𝑆 ∈ 𝑆 ) |
10 |
1 9
|
syl |
⊢ ( 𝜑 → ∪ 𝑆 ∈ 𝑆 ) |
11 |
8 10
|
elmapd |
⊢ ( 𝜑 → ( 𝐹 ∈ ( ∪ 𝑇 ↑m ∪ 𝑆 ) ↔ 𝐹 : ∪ 𝑆 ⟶ ∪ 𝑇 ) ) |
12 |
6 11
|
mpbird |
⊢ ( 𝜑 → 𝐹 ∈ ( ∪ 𝑇 ↑m ∪ 𝑆 ) ) |
13 |
|
fconstmpt |
⊢ ( ∪ 𝑆 × { 𝐴 } ) = ( 𝑥 ∈ ∪ 𝑆 ↦ 𝐴 ) |
14 |
13
|
cnveqi |
⊢ ◡ ( ∪ 𝑆 × { 𝐴 } ) = ◡ ( 𝑥 ∈ ∪ 𝑆 ↦ 𝐴 ) |
15 |
|
cnvxp |
⊢ ◡ ( ∪ 𝑆 × { 𝐴 } ) = ( { 𝐴 } × ∪ 𝑆 ) |
16 |
14 15
|
eqtr3i |
⊢ ◡ ( 𝑥 ∈ ∪ 𝑆 ↦ 𝐴 ) = ( { 𝐴 } × ∪ 𝑆 ) |
17 |
16
|
imaeq1i |
⊢ ( ◡ ( 𝑥 ∈ ∪ 𝑆 ↦ 𝐴 ) “ 𝑦 ) = ( ( { 𝐴 } × ∪ 𝑆 ) “ 𝑦 ) |
18 |
|
df-ima |
⊢ ( ( { 𝐴 } × ∪ 𝑆 ) “ 𝑦 ) = ran ( ( { 𝐴 } × ∪ 𝑆 ) ↾ 𝑦 ) |
19 |
|
df-rn |
⊢ ran ( ( { 𝐴 } × ∪ 𝑆 ) ↾ 𝑦 ) = dom ◡ ( ( { 𝐴 } × ∪ 𝑆 ) ↾ 𝑦 ) |
20 |
17 18 19
|
3eqtri |
⊢ ( ◡ ( 𝑥 ∈ ∪ 𝑆 ↦ 𝐴 ) “ 𝑦 ) = dom ◡ ( ( { 𝐴 } × ∪ 𝑆 ) ↾ 𝑦 ) |
21 |
|
df-res |
⊢ ( ( { 𝐴 } × ∪ 𝑆 ) ↾ 𝑦 ) = ( ( { 𝐴 } × ∪ 𝑆 ) ∩ ( 𝑦 × V ) ) |
22 |
|
inxp |
⊢ ( ( { 𝐴 } × ∪ 𝑆 ) ∩ ( 𝑦 × V ) ) = ( ( { 𝐴 } ∩ 𝑦 ) × ( ∪ 𝑆 ∩ V ) ) |
23 |
|
inv1 |
⊢ ( ∪ 𝑆 ∩ V ) = ∪ 𝑆 |
24 |
23
|
xpeq2i |
⊢ ( ( { 𝐴 } ∩ 𝑦 ) × ( ∪ 𝑆 ∩ V ) ) = ( ( { 𝐴 } ∩ 𝑦 ) × ∪ 𝑆 ) |
25 |
21 22 24
|
3eqtri |
⊢ ( ( { 𝐴 } × ∪ 𝑆 ) ↾ 𝑦 ) = ( ( { 𝐴 } ∩ 𝑦 ) × ∪ 𝑆 ) |
26 |
25
|
cnveqi |
⊢ ◡ ( ( { 𝐴 } × ∪ 𝑆 ) ↾ 𝑦 ) = ◡ ( ( { 𝐴 } ∩ 𝑦 ) × ∪ 𝑆 ) |
27 |
26
|
dmeqi |
⊢ dom ◡ ( ( { 𝐴 } × ∪ 𝑆 ) ↾ 𝑦 ) = dom ◡ ( ( { 𝐴 } ∩ 𝑦 ) × ∪ 𝑆 ) |
28 |
|
cnvxp |
⊢ ◡ ( ( { 𝐴 } ∩ 𝑦 ) × ∪ 𝑆 ) = ( ∪ 𝑆 × ( { 𝐴 } ∩ 𝑦 ) ) |
29 |
28
|
dmeqi |
⊢ dom ◡ ( ( { 𝐴 } ∩ 𝑦 ) × ∪ 𝑆 ) = dom ( ∪ 𝑆 × ( { 𝐴 } ∩ 𝑦 ) ) |
30 |
20 27 29
|
3eqtri |
⊢ ( ◡ ( 𝑥 ∈ ∪ 𝑆 ↦ 𝐴 ) “ 𝑦 ) = dom ( ∪ 𝑆 × ( { 𝐴 } ∩ 𝑦 ) ) |
31 |
|
xpeq2 |
⊢ ( ( { 𝐴 } ∩ 𝑦 ) = ∅ → ( ∪ 𝑆 × ( { 𝐴 } ∩ 𝑦 ) ) = ( ∪ 𝑆 × ∅ ) ) |
32 |
|
xp0 |
⊢ ( ∪ 𝑆 × ∅ ) = ∅ |
33 |
31 32
|
eqtrdi |
⊢ ( ( { 𝐴 } ∩ 𝑦 ) = ∅ → ( ∪ 𝑆 × ( { 𝐴 } ∩ 𝑦 ) ) = ∅ ) |
34 |
33
|
dmeqd |
⊢ ( ( { 𝐴 } ∩ 𝑦 ) = ∅ → dom ( ∪ 𝑆 × ( { 𝐴 } ∩ 𝑦 ) ) = dom ∅ ) |
35 |
|
dm0 |
⊢ dom ∅ = ∅ |
36 |
34 35
|
eqtrdi |
⊢ ( ( { 𝐴 } ∩ 𝑦 ) = ∅ → dom ( ∪ 𝑆 × ( { 𝐴 } ∩ 𝑦 ) ) = ∅ ) |
37 |
36
|
adantl |
⊢ ( ( 𝜑 ∧ ( { 𝐴 } ∩ 𝑦 ) = ∅ ) → dom ( ∪ 𝑆 × ( { 𝐴 } ∩ 𝑦 ) ) = ∅ ) |
38 |
|
0elsiga |
⊢ ( 𝑆 ∈ ∪ ran sigAlgebra → ∅ ∈ 𝑆 ) |
39 |
1 38
|
syl |
⊢ ( 𝜑 → ∅ ∈ 𝑆 ) |
40 |
39
|
adantr |
⊢ ( ( 𝜑 ∧ ( { 𝐴 } ∩ 𝑦 ) = ∅ ) → ∅ ∈ 𝑆 ) |
41 |
37 40
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ( { 𝐴 } ∩ 𝑦 ) = ∅ ) → dom ( ∪ 𝑆 × ( { 𝐴 } ∩ 𝑦 ) ) ∈ 𝑆 ) |
42 |
30 41
|
eqeltrid |
⊢ ( ( 𝜑 ∧ ( { 𝐴 } ∩ 𝑦 ) = ∅ ) → ( ◡ ( 𝑥 ∈ ∪ 𝑆 ↦ 𝐴 ) “ 𝑦 ) ∈ 𝑆 ) |
43 |
|
dmxp |
⊢ ( ( { 𝐴 } ∩ 𝑦 ) ≠ ∅ → dom ( ∪ 𝑆 × ( { 𝐴 } ∩ 𝑦 ) ) = ∪ 𝑆 ) |
44 |
43
|
adantl |
⊢ ( ( 𝜑 ∧ ( { 𝐴 } ∩ 𝑦 ) ≠ ∅ ) → dom ( ∪ 𝑆 × ( { 𝐴 } ∩ 𝑦 ) ) = ∪ 𝑆 ) |
45 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( { 𝐴 } ∩ 𝑦 ) ≠ ∅ ) → ∪ 𝑆 ∈ 𝑆 ) |
46 |
44 45
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ( { 𝐴 } ∩ 𝑦 ) ≠ ∅ ) → dom ( ∪ 𝑆 × ( { 𝐴 } ∩ 𝑦 ) ) ∈ 𝑆 ) |
47 |
30 46
|
eqeltrid |
⊢ ( ( 𝜑 ∧ ( { 𝐴 } ∩ 𝑦 ) ≠ ∅ ) → ( ◡ ( 𝑥 ∈ ∪ 𝑆 ↦ 𝐴 ) “ 𝑦 ) ∈ 𝑆 ) |
48 |
42 47
|
pm2.61dane |
⊢ ( 𝜑 → ( ◡ ( 𝑥 ∈ ∪ 𝑆 ↦ 𝐴 ) “ 𝑦 ) ∈ 𝑆 ) |
49 |
48
|
ralrimivw |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝑇 ( ◡ ( 𝑥 ∈ ∪ 𝑆 ↦ 𝐴 ) “ 𝑦 ) ∈ 𝑆 ) |
50 |
3
|
cnveqd |
⊢ ( 𝜑 → ◡ 𝐹 = ◡ ( 𝑥 ∈ ∪ 𝑆 ↦ 𝐴 ) ) |
51 |
50
|
imaeq1d |
⊢ ( 𝜑 → ( ◡ 𝐹 “ 𝑦 ) = ( ◡ ( 𝑥 ∈ ∪ 𝑆 ↦ 𝐴 ) “ 𝑦 ) ) |
52 |
51
|
eleq1d |
⊢ ( 𝜑 → ( ( ◡ 𝐹 “ 𝑦 ) ∈ 𝑆 ↔ ( ◡ ( 𝑥 ∈ ∪ 𝑆 ↦ 𝐴 ) “ 𝑦 ) ∈ 𝑆 ) ) |
53 |
52
|
ralbidv |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝑇 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝑆 ↔ ∀ 𝑦 ∈ 𝑇 ( ◡ ( 𝑥 ∈ ∪ 𝑆 ↦ 𝐴 ) “ 𝑦 ) ∈ 𝑆 ) ) |
54 |
49 53
|
mpbird |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝑇 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝑆 ) |
55 |
1 2
|
ismbfm |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑆 MblFnM 𝑇 ) ↔ ( 𝐹 ∈ ( ∪ 𝑇 ↑m ∪ 𝑆 ) ∧ ∀ 𝑦 ∈ 𝑇 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝑆 ) ) ) |
56 |
12 54 55
|
mpbir2and |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑆 MblFnM 𝑇 ) ) |