Metamath Proof Explorer


Theorem 1stmbfm

Description: The first projection map is measurable with regard to the product sigma-algebra. (Contributed by Thierry Arnoux, 3-Jun-2017)

Ref Expression
Hypotheses 1stmbfm.1 ( 𝜑𝑆 ran sigAlgebra )
1stmbfm.2 ( 𝜑𝑇 ran sigAlgebra )
Assertion 1stmbfm ( 𝜑 → ( 1st ↾ ( 𝑆 × 𝑇 ) ) ∈ ( ( 𝑆 ×s 𝑇 ) MblFnM 𝑆 ) )

Proof

Step Hyp Ref Expression
1 1stmbfm.1 ( 𝜑𝑆 ran sigAlgebra )
2 1stmbfm.2 ( 𝜑𝑇 ran sigAlgebra )
3 f1stres ( 1st ↾ ( 𝑆 × 𝑇 ) ) : ( 𝑆 × 𝑇 ) ⟶ 𝑆
4 sxuni ( ( 𝑆 ran sigAlgebra ∧ 𝑇 ran sigAlgebra ) → ( 𝑆 × 𝑇 ) = ( 𝑆 ×s 𝑇 ) )
5 1 2 4 syl2anc ( 𝜑 → ( 𝑆 × 𝑇 ) = ( 𝑆 ×s 𝑇 ) )
6 5 feq2d ( 𝜑 → ( ( 1st ↾ ( 𝑆 × 𝑇 ) ) : ( 𝑆 × 𝑇 ) ⟶ 𝑆 ↔ ( 1st ↾ ( 𝑆 × 𝑇 ) ) : ( 𝑆 ×s 𝑇 ) ⟶ 𝑆 ) )
7 3 6 mpbii ( 𝜑 → ( 1st ↾ ( 𝑆 × 𝑇 ) ) : ( 𝑆 ×s 𝑇 ) ⟶ 𝑆 )
8 unielsiga ( 𝑆 ran sigAlgebra → 𝑆𝑆 )
9 1 8 syl ( 𝜑 𝑆𝑆 )
10 sxsiga ( ( 𝑆 ran sigAlgebra ∧ 𝑇 ran sigAlgebra ) → ( 𝑆 ×s 𝑇 ) ∈ ran sigAlgebra )
11 1 2 10 syl2anc ( 𝜑 → ( 𝑆 ×s 𝑇 ) ∈ ran sigAlgebra )
12 unielsiga ( ( 𝑆 ×s 𝑇 ) ∈ ran sigAlgebra → ( 𝑆 ×s 𝑇 ) ∈ ( 𝑆 ×s 𝑇 ) )
13 11 12 syl ( 𝜑 ( 𝑆 ×s 𝑇 ) ∈ ( 𝑆 ×s 𝑇 ) )
14 9 13 elmapd ( 𝜑 → ( ( 1st ↾ ( 𝑆 × 𝑇 ) ) ∈ ( 𝑆m ( 𝑆 ×s 𝑇 ) ) ↔ ( 1st ↾ ( 𝑆 × 𝑇 ) ) : ( 𝑆 ×s 𝑇 ) ⟶ 𝑆 ) )
15 7 14 mpbird ( 𝜑 → ( 1st ↾ ( 𝑆 × 𝑇 ) ) ∈ ( 𝑆m ( 𝑆 ×s 𝑇 ) ) )
16 ffn ( ( 1st ↾ ( 𝑆 × 𝑇 ) ) : ( 𝑆 × 𝑇 ) ⟶ 𝑆 → ( 1st ↾ ( 𝑆 × 𝑇 ) ) Fn ( 𝑆 × 𝑇 ) )
17 elpreima ( ( 1st ↾ ( 𝑆 × 𝑇 ) ) Fn ( 𝑆 × 𝑇 ) → ( 𝑧 ∈ ( ( 1st ↾ ( 𝑆 × 𝑇 ) ) “ 𝑎 ) ↔ ( 𝑧 ∈ ( 𝑆 × 𝑇 ) ∧ ( ( 1st ↾ ( 𝑆 × 𝑇 ) ) ‘ 𝑧 ) ∈ 𝑎 ) ) )
18 3 16 17 mp2b ( 𝑧 ∈ ( ( 1st ↾ ( 𝑆 × 𝑇 ) ) “ 𝑎 ) ↔ ( 𝑧 ∈ ( 𝑆 × 𝑇 ) ∧ ( ( 1st ↾ ( 𝑆 × 𝑇 ) ) ‘ 𝑧 ) ∈ 𝑎 ) )
19 fvres ( 𝑧 ∈ ( 𝑆 × 𝑇 ) → ( ( 1st ↾ ( 𝑆 × 𝑇 ) ) ‘ 𝑧 ) = ( 1st𝑧 ) )
20 19 eleq1d ( 𝑧 ∈ ( 𝑆 × 𝑇 ) → ( ( ( 1st ↾ ( 𝑆 × 𝑇 ) ) ‘ 𝑧 ) ∈ 𝑎 ↔ ( 1st𝑧 ) ∈ 𝑎 ) )
21 1st2nd2 ( 𝑧 ∈ ( 𝑆 × 𝑇 ) → 𝑧 = ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ )
22 xp2nd ( 𝑧 ∈ ( 𝑆 × 𝑇 ) → ( 2nd𝑧 ) ∈ 𝑇 )
23 elxp6 ( 𝑧 ∈ ( 𝑎 × 𝑇 ) ↔ ( 𝑧 = ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ ∧ ( ( 1st𝑧 ) ∈ 𝑎 ∧ ( 2nd𝑧 ) ∈ 𝑇 ) ) )
24 anass ( ( ( 𝑧 = ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ ∧ ( 1st𝑧 ) ∈ 𝑎 ) ∧ ( 2nd𝑧 ) ∈ 𝑇 ) ↔ ( 𝑧 = ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ ∧ ( ( 1st𝑧 ) ∈ 𝑎 ∧ ( 2nd𝑧 ) ∈ 𝑇 ) ) )
25 an32 ( ( ( 𝑧 = ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ ∧ ( 1st𝑧 ) ∈ 𝑎 ) ∧ ( 2nd𝑧 ) ∈ 𝑇 ) ↔ ( ( 𝑧 = ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ ∧ ( 2nd𝑧 ) ∈ 𝑇 ) ∧ ( 1st𝑧 ) ∈ 𝑎 ) )
26 23 24 25 3bitr2i ( 𝑧 ∈ ( 𝑎 × 𝑇 ) ↔ ( ( 𝑧 = ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ ∧ ( 2nd𝑧 ) ∈ 𝑇 ) ∧ ( 1st𝑧 ) ∈ 𝑎 ) )
27 26 baib ( ( 𝑧 = ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ ∧ ( 2nd𝑧 ) ∈ 𝑇 ) → ( 𝑧 ∈ ( 𝑎 × 𝑇 ) ↔ ( 1st𝑧 ) ∈ 𝑎 ) )
28 21 22 27 syl2anc ( 𝑧 ∈ ( 𝑆 × 𝑇 ) → ( 𝑧 ∈ ( 𝑎 × 𝑇 ) ↔ ( 1st𝑧 ) ∈ 𝑎 ) )
29 20 28 bitr4d ( 𝑧 ∈ ( 𝑆 × 𝑇 ) → ( ( ( 1st ↾ ( 𝑆 × 𝑇 ) ) ‘ 𝑧 ) ∈ 𝑎𝑧 ∈ ( 𝑎 × 𝑇 ) ) )
30 29 pm5.32i ( ( 𝑧 ∈ ( 𝑆 × 𝑇 ) ∧ ( ( 1st ↾ ( 𝑆 × 𝑇 ) ) ‘ 𝑧 ) ∈ 𝑎 ) ↔ ( 𝑧 ∈ ( 𝑆 × 𝑇 ) ∧ 𝑧 ∈ ( 𝑎 × 𝑇 ) ) )
31 18 30 bitri ( 𝑧 ∈ ( ( 1st ↾ ( 𝑆 × 𝑇 ) ) “ 𝑎 ) ↔ ( 𝑧 ∈ ( 𝑆 × 𝑇 ) ∧ 𝑧 ∈ ( 𝑎 × 𝑇 ) ) )
32 sgon ( 𝑆 ran sigAlgebra → 𝑆 ∈ ( sigAlgebra ‘ 𝑆 ) )
33 sigasspw ( 𝑆 ∈ ( sigAlgebra ‘ 𝑆 ) → 𝑆 ⊆ 𝒫 𝑆 )
34 pwssb ( 𝑆 ⊆ 𝒫 𝑆 ↔ ∀ 𝑎𝑆 𝑎 𝑆 )
35 34 biimpi ( 𝑆 ⊆ 𝒫 𝑆 → ∀ 𝑎𝑆 𝑎 𝑆 )
36 1 32 33 35 4syl ( 𝜑 → ∀ 𝑎𝑆 𝑎 𝑆 )
37 36 r19.21bi ( ( 𝜑𝑎𝑆 ) → 𝑎 𝑆 )
38 xpss1 ( 𝑎 𝑆 → ( 𝑎 × 𝑇 ) ⊆ ( 𝑆 × 𝑇 ) )
39 37 38 syl ( ( 𝜑𝑎𝑆 ) → ( 𝑎 × 𝑇 ) ⊆ ( 𝑆 × 𝑇 ) )
40 39 sseld ( ( 𝜑𝑎𝑆 ) → ( 𝑧 ∈ ( 𝑎 × 𝑇 ) → 𝑧 ∈ ( 𝑆 × 𝑇 ) ) )
41 40 pm4.71rd ( ( 𝜑𝑎𝑆 ) → ( 𝑧 ∈ ( 𝑎 × 𝑇 ) ↔ ( 𝑧 ∈ ( 𝑆 × 𝑇 ) ∧ 𝑧 ∈ ( 𝑎 × 𝑇 ) ) ) )
42 31 41 bitr4id ( ( 𝜑𝑎𝑆 ) → ( 𝑧 ∈ ( ( 1st ↾ ( 𝑆 × 𝑇 ) ) “ 𝑎 ) ↔ 𝑧 ∈ ( 𝑎 × 𝑇 ) ) )
43 42 eqrdv ( ( 𝜑𝑎𝑆 ) → ( ( 1st ↾ ( 𝑆 × 𝑇 ) ) “ 𝑎 ) = ( 𝑎 × 𝑇 ) )
44 1 adantr ( ( 𝜑𝑎𝑆 ) → 𝑆 ran sigAlgebra )
45 2 adantr ( ( 𝜑𝑎𝑆 ) → 𝑇 ran sigAlgebra )
46 simpr ( ( 𝜑𝑎𝑆 ) → 𝑎𝑆 )
47 eqid 𝑇 = 𝑇
48 issgon ( 𝑇 ∈ ( sigAlgebra ‘ 𝑇 ) ↔ ( 𝑇 ran sigAlgebra ∧ 𝑇 = 𝑇 ) )
49 2 47 48 sylanblrc ( 𝜑𝑇 ∈ ( sigAlgebra ‘ 𝑇 ) )
50 baselsiga ( 𝑇 ∈ ( sigAlgebra ‘ 𝑇 ) → 𝑇𝑇 )
51 49 50 syl ( 𝜑 𝑇𝑇 )
52 51 adantr ( ( 𝜑𝑎𝑆 ) → 𝑇𝑇 )
53 elsx ( ( ( 𝑆 ran sigAlgebra ∧ 𝑇 ran sigAlgebra ) ∧ ( 𝑎𝑆 𝑇𝑇 ) ) → ( 𝑎 × 𝑇 ) ∈ ( 𝑆 ×s 𝑇 ) )
54 44 45 46 52 53 syl22anc ( ( 𝜑𝑎𝑆 ) → ( 𝑎 × 𝑇 ) ∈ ( 𝑆 ×s 𝑇 ) )
55 43 54 eqeltrd ( ( 𝜑𝑎𝑆 ) → ( ( 1st ↾ ( 𝑆 × 𝑇 ) ) “ 𝑎 ) ∈ ( 𝑆 ×s 𝑇 ) )
56 55 ralrimiva ( 𝜑 → ∀ 𝑎𝑆 ( ( 1st ↾ ( 𝑆 × 𝑇 ) ) “ 𝑎 ) ∈ ( 𝑆 ×s 𝑇 ) )
57 11 1 ismbfm ( 𝜑 → ( ( 1st ↾ ( 𝑆 × 𝑇 ) ) ∈ ( ( 𝑆 ×s 𝑇 ) MblFnM 𝑆 ) ↔ ( ( 1st ↾ ( 𝑆 × 𝑇 ) ) ∈ ( 𝑆m ( 𝑆 ×s 𝑇 ) ) ∧ ∀ 𝑎𝑆 ( ( 1st ↾ ( 𝑆 × 𝑇 ) ) “ 𝑎 ) ∈ ( 𝑆 ×s 𝑇 ) ) ) )
58 15 56 57 mpbir2and ( 𝜑 → ( 1st ↾ ( 𝑆 × 𝑇 ) ) ∈ ( ( 𝑆 ×s 𝑇 ) MblFnM 𝑆 ) )