Step |
Hyp |
Ref |
Expression |
1 |
|
vex |
⊢ 𝑦 ∈ V |
2 |
|
vex |
⊢ 𝑧 ∈ V |
3 |
1 2
|
op1sta |
⊢ ∪ dom { 〈 𝑦 , 𝑧 〉 } = 𝑦 |
4 |
3
|
eleq1i |
⊢ ( ∪ dom { 〈 𝑦 , 𝑧 〉 } ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) |
5 |
4
|
biimpri |
⊢ ( 𝑦 ∈ 𝐴 → ∪ dom { 〈 𝑦 , 𝑧 〉 } ∈ 𝐴 ) |
6 |
5
|
adantr |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) → ∪ dom { 〈 𝑦 , 𝑧 〉 } ∈ 𝐴 ) |
7 |
6
|
rgen2 |
⊢ ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 ∪ dom { 〈 𝑦 , 𝑧 〉 } ∈ 𝐴 |
8 |
|
sneq |
⊢ ( 𝑥 = 〈 𝑦 , 𝑧 〉 → { 𝑥 } = { 〈 𝑦 , 𝑧 〉 } ) |
9 |
8
|
dmeqd |
⊢ ( 𝑥 = 〈 𝑦 , 𝑧 〉 → dom { 𝑥 } = dom { 〈 𝑦 , 𝑧 〉 } ) |
10 |
9
|
unieqd |
⊢ ( 𝑥 = 〈 𝑦 , 𝑧 〉 → ∪ dom { 𝑥 } = ∪ dom { 〈 𝑦 , 𝑧 〉 } ) |
11 |
10
|
eleq1d |
⊢ ( 𝑥 = 〈 𝑦 , 𝑧 〉 → ( ∪ dom { 𝑥 } ∈ 𝐴 ↔ ∪ dom { 〈 𝑦 , 𝑧 〉 } ∈ 𝐴 ) ) |
12 |
11
|
ralxp |
⊢ ( ∀ 𝑥 ∈ ( 𝐴 × 𝐵 ) ∪ dom { 𝑥 } ∈ 𝐴 ↔ ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 ∪ dom { 〈 𝑦 , 𝑧 〉 } ∈ 𝐴 ) |
13 |
7 12
|
mpbir |
⊢ ∀ 𝑥 ∈ ( 𝐴 × 𝐵 ) ∪ dom { 𝑥 } ∈ 𝐴 |
14 |
|
df-1st |
⊢ 1st = ( 𝑥 ∈ V ↦ ∪ dom { 𝑥 } ) |
15 |
14
|
reseq1i |
⊢ ( 1st ↾ ( 𝐴 × 𝐵 ) ) = ( ( 𝑥 ∈ V ↦ ∪ dom { 𝑥 } ) ↾ ( 𝐴 × 𝐵 ) ) |
16 |
|
ssv |
⊢ ( 𝐴 × 𝐵 ) ⊆ V |
17 |
|
resmpt |
⊢ ( ( 𝐴 × 𝐵 ) ⊆ V → ( ( 𝑥 ∈ V ↦ ∪ dom { 𝑥 } ) ↾ ( 𝐴 × 𝐵 ) ) = ( 𝑥 ∈ ( 𝐴 × 𝐵 ) ↦ ∪ dom { 𝑥 } ) ) |
18 |
16 17
|
ax-mp |
⊢ ( ( 𝑥 ∈ V ↦ ∪ dom { 𝑥 } ) ↾ ( 𝐴 × 𝐵 ) ) = ( 𝑥 ∈ ( 𝐴 × 𝐵 ) ↦ ∪ dom { 𝑥 } ) |
19 |
15 18
|
eqtri |
⊢ ( 1st ↾ ( 𝐴 × 𝐵 ) ) = ( 𝑥 ∈ ( 𝐴 × 𝐵 ) ↦ ∪ dom { 𝑥 } ) |
20 |
19
|
fmpt |
⊢ ( ∀ 𝑥 ∈ ( 𝐴 × 𝐵 ) ∪ dom { 𝑥 } ∈ 𝐴 ↔ ( 1st ↾ ( 𝐴 × 𝐵 ) ) : ( 𝐴 × 𝐵 ) ⟶ 𝐴 ) |
21 |
13 20
|
mpbi |
⊢ ( 1st ↾ ( 𝐴 × 𝐵 ) ) : ( 𝐴 × 𝐵 ) ⟶ 𝐴 |