Metamath Proof Explorer


Theorem 1stmbfm

Description: The first projection map is measurable with regard to the product sigma-algebra. (Contributed by Thierry Arnoux, 3-Jun-2017)

Ref Expression
Hypotheses 1stmbfm.1 φ S ran sigAlgebra
1stmbfm.2 φ T ran sigAlgebra
Assertion 1stmbfm φ 1 st S × T S × s T MblFn μ S

Proof

Step Hyp Ref Expression
1 1stmbfm.1 φ S ran sigAlgebra
2 1stmbfm.2 φ T ran sigAlgebra
3 f1stres 1 st S × T : S × T S
4 sxuni S ran sigAlgebra T ran sigAlgebra S × T = S × s T
5 1 2 4 syl2anc φ S × T = S × s T
6 5 feq2d φ 1 st S × T : S × T S 1 st S × T : S × s T S
7 3 6 mpbii φ 1 st S × T : S × s T S
8 unielsiga S ran sigAlgebra S S
9 1 8 syl φ S S
10 sxsiga S ran sigAlgebra T ran sigAlgebra S × s T ran sigAlgebra
11 1 2 10 syl2anc φ S × s T ran sigAlgebra
12 unielsiga S × s T ran sigAlgebra S × s T S × s T
13 11 12 syl φ S × s T S × s T
14 9 13 elmapd φ 1 st S × T S S × s T 1 st S × T : S × s T S
15 7 14 mpbird φ 1 st S × T S S × s T
16 ffn 1 st S × T : S × T S 1 st S × T Fn S × T
17 elpreima 1 st S × T Fn S × T z 1 st S × T -1 a z S × T 1 st S × T z a
18 3 16 17 mp2b z 1 st S × T -1 a z S × T 1 st S × T z a
19 fvres z S × T 1 st S × T z = 1 st z
20 19 eleq1d z S × T 1 st S × T z a 1 st z a
21 1st2nd2 z S × T z = 1 st z 2 nd z
22 xp2nd z S × T 2 nd z T
23 elxp6 z a × T z = 1 st z 2 nd z 1 st z a 2 nd z T
24 anass z = 1 st z 2 nd z 1 st z a 2 nd z T z = 1 st z 2 nd z 1 st z a 2 nd z T
25 an32 z = 1 st z 2 nd z 1 st z a 2 nd z T z = 1 st z 2 nd z 2 nd z T 1 st z a
26 23 24 25 3bitr2i z a × T z = 1 st z 2 nd z 2 nd z T 1 st z a
27 26 baib z = 1 st z 2 nd z 2 nd z T z a × T 1 st z a
28 21 22 27 syl2anc z S × T z a × T 1 st z a
29 20 28 bitr4d z S × T 1 st S × T z a z a × T
30 29 pm5.32i z S × T 1 st S × T z a z S × T z a × T
31 18 30 bitri z 1 st S × T -1 a z S × T z a × T
32 sgon S ran sigAlgebra S sigAlgebra S
33 sigasspw S sigAlgebra S S 𝒫 S
34 pwssb S 𝒫 S a S a S
35 34 biimpi S 𝒫 S a S a S
36 1 32 33 35 4syl φ a S a S
37 36 r19.21bi φ a S a S
38 xpss1 a S a × T S × T
39 37 38 syl φ a S a × T S × T
40 39 sseld φ a S z a × T z S × T
41 40 pm4.71rd φ a S z a × T z S × T z a × T
42 31 41 bitr4id φ a S z 1 st S × T -1 a z a × T
43 42 eqrdv φ a S 1 st S × T -1 a = a × T
44 1 adantr φ a S S ran sigAlgebra
45 2 adantr φ a S T ran sigAlgebra
46 simpr φ a S a S
47 eqid T = T
48 issgon T sigAlgebra T T ran sigAlgebra T = T
49 2 47 48 sylanblrc φ T sigAlgebra T
50 baselsiga T sigAlgebra T T T
51 49 50 syl φ T T
52 51 adantr φ a S T T
53 elsx S ran sigAlgebra T ran sigAlgebra a S T T a × T S × s T
54 44 45 46 52 53 syl22anc φ a S a × T S × s T
55 43 54 eqeltrd φ a S 1 st S × T -1 a S × s T
56 55 ralrimiva φ a S 1 st S × T -1 a S × s T
57 11 1 ismbfm φ 1 st S × T S × s T MblFn μ S 1 st S × T S S × s T a S 1 st S × T -1 a S × s T
58 15 56 57 mpbir2and φ 1 st S × T S × s T MblFn μ S