Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Abstract measure
Product Sigma-Algebra
sxsiga
Next ⟩
sxsigon
Metamath Proof Explorer
Ascii
Unicode
Theorem
sxsiga
Description:
A product sigma-algebra is a sigma-algebra.
(Contributed by
Thierry Arnoux
, 1-Jun-2017)
Ref
Expression
Assertion
sxsiga
⊢
S
∈
⋃
ran
⁡
sigAlgebra
∧
T
∈
⋃
ran
⁡
sigAlgebra
→
S
×
s
T
∈
⋃
ran
⁡
sigAlgebra
Proof
Step
Hyp
Ref
Expression
1
eqid
⊢
ran
⁡
x
∈
S
,
y
∈
T
⟼
x
×
y
=
ran
⁡
x
∈
S
,
y
∈
T
⟼
x
×
y
2
1
sxval
⊢
S
∈
⋃
ran
⁡
sigAlgebra
∧
T
∈
⋃
ran
⁡
sigAlgebra
→
S
×
s
T
=
𝛔
⁡
ran
⁡
x
∈
S
,
y
∈
T
⟼
x
×
y
3
1
txbasex
⊢
S
∈
⋃
ran
⁡
sigAlgebra
∧
T
∈
⋃
ran
⁡
sigAlgebra
→
ran
⁡
x
∈
S
,
y
∈
T
⟼
x
×
y
∈
V
4
sigagensiga
⊢
ran
⁡
x
∈
S
,
y
∈
T
⟼
x
×
y
∈
V
→
𝛔
⁡
ran
⁡
x
∈
S
,
y
∈
T
⟼
x
×
y
∈
sigAlgebra
⁡
⋃
ran
⁡
x
∈
S
,
y
∈
T
⟼
x
×
y
5
3
4
syl
⊢
S
∈
⋃
ran
⁡
sigAlgebra
∧
T
∈
⋃
ran
⁡
sigAlgebra
→
𝛔
⁡
ran
⁡
x
∈
S
,
y
∈
T
⟼
x
×
y
∈
sigAlgebra
⁡
⋃
ran
⁡
x
∈
S
,
y
∈
T
⟼
x
×
y
6
2
5
eqeltrd
⊢
S
∈
⋃
ran
⁡
sigAlgebra
∧
T
∈
⋃
ran
⁡
sigAlgebra
→
S
×
s
T
∈
sigAlgebra
⁡
⋃
ran
⁡
x
∈
S
,
y
∈
T
⟼
x
×
y
7
elrnsiga
⊢
S
×
s
T
∈
sigAlgebra
⁡
⋃
ran
⁡
x
∈
S
,
y
∈
T
⟼
x
×
y
→
S
×
s
T
∈
⋃
ran
⁡
sigAlgebra
8
6
7
syl
⊢
S
∈
⋃
ran
⁡
sigAlgebra
∧
T
∈
⋃
ran
⁡
sigAlgebra
→
S
×
s
T
∈
⋃
ran
⁡
sigAlgebra