Metamath Proof Explorer


Theorem sxval

Description: Value of the product sigma-algebra operation. (Contributed by Thierry Arnoux, 1-Jun-2017)

Ref Expression
Hypothesis sxval.1 A=ranxS,yTx×y
Assertion sxval SVTWS×sT=𝛔A

Proof

Step Hyp Ref Expression
1 sxval.1 A=ranxS,yTx×y
2 elex SVSV
3 elex TWTV
4 id s=Ss=S
5 eqidd s=St=t
6 eqidd s=Sx×y=x×y
7 4 5 6 mpoeq123dv s=Sxs,ytx×y=xS,ytx×y
8 7 rneqd s=Sranxs,ytx×y=ranxS,ytx×y
9 8 fveq2d s=S𝛔ranxs,ytx×y=𝛔ranxS,ytx×y
10 eqidd t=TS=S
11 id t=Tt=T
12 eqidd t=Tx×y=x×y
13 10 11 12 mpoeq123dv t=TxS,ytx×y=xS,yTx×y
14 13 rneqd t=TranxS,ytx×y=ranxS,yTx×y
15 14 fveq2d t=T𝛔ranxS,ytx×y=𝛔ranxS,yTx×y
16 df-sx ×s=sV,tV𝛔ranxs,ytx×y
17 fvex 𝛔ranxS,yTx×yV
18 9 15 16 17 ovmpo SVTVS×sT=𝛔ranxS,yTx×y
19 2 3 18 syl2an SVTWS×sT=𝛔ranxS,yTx×y
20 1 fveq2i 𝛔A=𝛔ranxS,yTx×y
21 19 20 eqtr4di SVTWS×sT=𝛔A