| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sxval.1 |
|- A = ran ( x e. S , y e. T |-> ( x X. y ) ) |
| 2 |
|
elex |
|- ( S e. V -> S e. _V ) |
| 3 |
|
elex |
|- ( T e. W -> T e. _V ) |
| 4 |
|
id |
|- ( s = S -> s = S ) |
| 5 |
|
eqidd |
|- ( s = S -> t = t ) |
| 6 |
|
eqidd |
|- ( s = S -> ( x X. y ) = ( x X. y ) ) |
| 7 |
4 5 6
|
mpoeq123dv |
|- ( s = S -> ( x e. s , y e. t |-> ( x X. y ) ) = ( x e. S , y e. t |-> ( x X. y ) ) ) |
| 8 |
7
|
rneqd |
|- ( s = S -> ran ( x e. s , y e. t |-> ( x X. y ) ) = ran ( x e. S , y e. t |-> ( x X. y ) ) ) |
| 9 |
8
|
fveq2d |
|- ( s = S -> ( sigaGen ` ran ( x e. s , y e. t |-> ( x X. y ) ) ) = ( sigaGen ` ran ( x e. S , y e. t |-> ( x X. y ) ) ) ) |
| 10 |
|
eqidd |
|- ( t = T -> S = S ) |
| 11 |
|
id |
|- ( t = T -> t = T ) |
| 12 |
|
eqidd |
|- ( t = T -> ( x X. y ) = ( x X. y ) ) |
| 13 |
10 11 12
|
mpoeq123dv |
|- ( t = T -> ( x e. S , y e. t |-> ( x X. y ) ) = ( x e. S , y e. T |-> ( x X. y ) ) ) |
| 14 |
13
|
rneqd |
|- ( t = T -> ran ( x e. S , y e. t |-> ( x X. y ) ) = ran ( x e. S , y e. T |-> ( x X. y ) ) ) |
| 15 |
14
|
fveq2d |
|- ( t = T -> ( sigaGen ` ran ( x e. S , y e. t |-> ( x X. y ) ) ) = ( sigaGen ` ran ( x e. S , y e. T |-> ( x X. y ) ) ) ) |
| 16 |
|
df-sx |
|- sX = ( s e. _V , t e. _V |-> ( sigaGen ` ran ( x e. s , y e. t |-> ( x X. y ) ) ) ) |
| 17 |
|
fvex |
|- ( sigaGen ` ran ( x e. S , y e. T |-> ( x X. y ) ) ) e. _V |
| 18 |
9 15 16 17
|
ovmpo |
|- ( ( S e. _V /\ T e. _V ) -> ( S sX T ) = ( sigaGen ` ran ( x e. S , y e. T |-> ( x X. y ) ) ) ) |
| 19 |
2 3 18
|
syl2an |
|- ( ( S e. V /\ T e. W ) -> ( S sX T ) = ( sigaGen ` ran ( x e. S , y e. T |-> ( x X. y ) ) ) ) |
| 20 |
1
|
fveq2i |
|- ( sigaGen ` A ) = ( sigaGen ` ran ( x e. S , y e. T |-> ( x X. y ) ) ) |
| 21 |
19 20
|
eqtr4di |
|- ( ( S e. V /\ T e. W ) -> ( S sX T ) = ( sigaGen ` A ) ) |