Step |
Hyp |
Ref |
Expression |
1 |
|
sxval.1 |
|- A = ran ( x e. S , y e. T |-> ( x X. y ) ) |
2 |
|
elex |
|- ( S e. V -> S e. _V ) |
3 |
|
elex |
|- ( T e. W -> T e. _V ) |
4 |
|
id |
|- ( s = S -> s = S ) |
5 |
|
eqidd |
|- ( s = S -> t = t ) |
6 |
|
eqidd |
|- ( s = S -> ( x X. y ) = ( x X. y ) ) |
7 |
4 5 6
|
mpoeq123dv |
|- ( s = S -> ( x e. s , y e. t |-> ( x X. y ) ) = ( x e. S , y e. t |-> ( x X. y ) ) ) |
8 |
7
|
rneqd |
|- ( s = S -> ran ( x e. s , y e. t |-> ( x X. y ) ) = ran ( x e. S , y e. t |-> ( x X. y ) ) ) |
9 |
8
|
fveq2d |
|- ( s = S -> ( sigaGen ` ran ( x e. s , y e. t |-> ( x X. y ) ) ) = ( sigaGen ` ran ( x e. S , y e. t |-> ( x X. y ) ) ) ) |
10 |
|
eqidd |
|- ( t = T -> S = S ) |
11 |
|
id |
|- ( t = T -> t = T ) |
12 |
|
eqidd |
|- ( t = T -> ( x X. y ) = ( x X. y ) ) |
13 |
10 11 12
|
mpoeq123dv |
|- ( t = T -> ( x e. S , y e. t |-> ( x X. y ) ) = ( x e. S , y e. T |-> ( x X. y ) ) ) |
14 |
13
|
rneqd |
|- ( t = T -> ran ( x e. S , y e. t |-> ( x X. y ) ) = ran ( x e. S , y e. T |-> ( x X. y ) ) ) |
15 |
14
|
fveq2d |
|- ( t = T -> ( sigaGen ` ran ( x e. S , y e. t |-> ( x X. y ) ) ) = ( sigaGen ` ran ( x e. S , y e. T |-> ( x X. y ) ) ) ) |
16 |
|
df-sx |
|- sX = ( s e. _V , t e. _V |-> ( sigaGen ` ran ( x e. s , y e. t |-> ( x X. y ) ) ) ) |
17 |
|
fvex |
|- ( sigaGen ` ran ( x e. S , y e. T |-> ( x X. y ) ) ) e. _V |
18 |
9 15 16 17
|
ovmpo |
|- ( ( S e. _V /\ T e. _V ) -> ( S sX T ) = ( sigaGen ` ran ( x e. S , y e. T |-> ( x X. y ) ) ) ) |
19 |
2 3 18
|
syl2an |
|- ( ( S e. V /\ T e. W ) -> ( S sX T ) = ( sigaGen ` ran ( x e. S , y e. T |-> ( x X. y ) ) ) ) |
20 |
1
|
fveq2i |
|- ( sigaGen ` A ) = ( sigaGen ` ran ( x e. S , y e. T |-> ( x X. y ) ) ) |
21 |
19 20
|
eqtr4di |
|- ( ( S e. V /\ T e. W ) -> ( S sX T ) = ( sigaGen ` A ) ) |