Metamath Proof Explorer


Theorem sxval

Description: Value of the product sigma-algebra operation. (Contributed by Thierry Arnoux, 1-Jun-2017)

Ref Expression
Hypothesis sxval.1 𝐴 = ran ( 𝑥𝑆 , 𝑦𝑇 ↦ ( 𝑥 × 𝑦 ) )
Assertion sxval ( ( 𝑆𝑉𝑇𝑊 ) → ( 𝑆 ×s 𝑇 ) = ( sigaGen ‘ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 sxval.1 𝐴 = ran ( 𝑥𝑆 , 𝑦𝑇 ↦ ( 𝑥 × 𝑦 ) )
2 elex ( 𝑆𝑉𝑆 ∈ V )
3 elex ( 𝑇𝑊𝑇 ∈ V )
4 id ( 𝑠 = 𝑆𝑠 = 𝑆 )
5 eqidd ( 𝑠 = 𝑆𝑡 = 𝑡 )
6 eqidd ( 𝑠 = 𝑆 → ( 𝑥 × 𝑦 ) = ( 𝑥 × 𝑦 ) )
7 4 5 6 mpoeq123dv ( 𝑠 = 𝑆 → ( 𝑥𝑠 , 𝑦𝑡 ↦ ( 𝑥 × 𝑦 ) ) = ( 𝑥𝑆 , 𝑦𝑡 ↦ ( 𝑥 × 𝑦 ) ) )
8 7 rneqd ( 𝑠 = 𝑆 → ran ( 𝑥𝑠 , 𝑦𝑡 ↦ ( 𝑥 × 𝑦 ) ) = ran ( 𝑥𝑆 , 𝑦𝑡 ↦ ( 𝑥 × 𝑦 ) ) )
9 8 fveq2d ( 𝑠 = 𝑆 → ( sigaGen ‘ ran ( 𝑥𝑠 , 𝑦𝑡 ↦ ( 𝑥 × 𝑦 ) ) ) = ( sigaGen ‘ ran ( 𝑥𝑆 , 𝑦𝑡 ↦ ( 𝑥 × 𝑦 ) ) ) )
10 eqidd ( 𝑡 = 𝑇𝑆 = 𝑆 )
11 id ( 𝑡 = 𝑇𝑡 = 𝑇 )
12 eqidd ( 𝑡 = 𝑇 → ( 𝑥 × 𝑦 ) = ( 𝑥 × 𝑦 ) )
13 10 11 12 mpoeq123dv ( 𝑡 = 𝑇 → ( 𝑥𝑆 , 𝑦𝑡 ↦ ( 𝑥 × 𝑦 ) ) = ( 𝑥𝑆 , 𝑦𝑇 ↦ ( 𝑥 × 𝑦 ) ) )
14 13 rneqd ( 𝑡 = 𝑇 → ran ( 𝑥𝑆 , 𝑦𝑡 ↦ ( 𝑥 × 𝑦 ) ) = ran ( 𝑥𝑆 , 𝑦𝑇 ↦ ( 𝑥 × 𝑦 ) ) )
15 14 fveq2d ( 𝑡 = 𝑇 → ( sigaGen ‘ ran ( 𝑥𝑆 , 𝑦𝑡 ↦ ( 𝑥 × 𝑦 ) ) ) = ( sigaGen ‘ ran ( 𝑥𝑆 , 𝑦𝑇 ↦ ( 𝑥 × 𝑦 ) ) ) )
16 df-sx ×s = ( 𝑠 ∈ V , 𝑡 ∈ V ↦ ( sigaGen ‘ ran ( 𝑥𝑠 , 𝑦𝑡 ↦ ( 𝑥 × 𝑦 ) ) ) )
17 fvex ( sigaGen ‘ ran ( 𝑥𝑆 , 𝑦𝑇 ↦ ( 𝑥 × 𝑦 ) ) ) ∈ V
18 9 15 16 17 ovmpo ( ( 𝑆 ∈ V ∧ 𝑇 ∈ V ) → ( 𝑆 ×s 𝑇 ) = ( sigaGen ‘ ran ( 𝑥𝑆 , 𝑦𝑇 ↦ ( 𝑥 × 𝑦 ) ) ) )
19 2 3 18 syl2an ( ( 𝑆𝑉𝑇𝑊 ) → ( 𝑆 ×s 𝑇 ) = ( sigaGen ‘ ran ( 𝑥𝑆 , 𝑦𝑇 ↦ ( 𝑥 × 𝑦 ) ) ) )
20 1 fveq2i ( sigaGen ‘ 𝐴 ) = ( sigaGen ‘ ran ( 𝑥𝑆 , 𝑦𝑇 ↦ ( 𝑥 × 𝑦 ) ) )
21 19 20 eqtr4di ( ( 𝑆𝑉𝑇𝑊 ) → ( 𝑆 ×s 𝑇 ) = ( sigaGen ‘ 𝐴 ) )