| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sxval.1 |
⊢ 𝐴 = ran ( 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑇 ↦ ( 𝑥 × 𝑦 ) ) |
| 2 |
|
elex |
⊢ ( 𝑆 ∈ 𝑉 → 𝑆 ∈ V ) |
| 3 |
|
elex |
⊢ ( 𝑇 ∈ 𝑊 → 𝑇 ∈ V ) |
| 4 |
|
id |
⊢ ( 𝑠 = 𝑆 → 𝑠 = 𝑆 ) |
| 5 |
|
eqidd |
⊢ ( 𝑠 = 𝑆 → 𝑡 = 𝑡 ) |
| 6 |
|
eqidd |
⊢ ( 𝑠 = 𝑆 → ( 𝑥 × 𝑦 ) = ( 𝑥 × 𝑦 ) ) |
| 7 |
4 5 6
|
mpoeq123dv |
⊢ ( 𝑠 = 𝑆 → ( 𝑥 ∈ 𝑠 , 𝑦 ∈ 𝑡 ↦ ( 𝑥 × 𝑦 ) ) = ( 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑡 ↦ ( 𝑥 × 𝑦 ) ) ) |
| 8 |
7
|
rneqd |
⊢ ( 𝑠 = 𝑆 → ran ( 𝑥 ∈ 𝑠 , 𝑦 ∈ 𝑡 ↦ ( 𝑥 × 𝑦 ) ) = ran ( 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑡 ↦ ( 𝑥 × 𝑦 ) ) ) |
| 9 |
8
|
fveq2d |
⊢ ( 𝑠 = 𝑆 → ( sigaGen ‘ ran ( 𝑥 ∈ 𝑠 , 𝑦 ∈ 𝑡 ↦ ( 𝑥 × 𝑦 ) ) ) = ( sigaGen ‘ ran ( 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑡 ↦ ( 𝑥 × 𝑦 ) ) ) ) |
| 10 |
|
eqidd |
⊢ ( 𝑡 = 𝑇 → 𝑆 = 𝑆 ) |
| 11 |
|
id |
⊢ ( 𝑡 = 𝑇 → 𝑡 = 𝑇 ) |
| 12 |
|
eqidd |
⊢ ( 𝑡 = 𝑇 → ( 𝑥 × 𝑦 ) = ( 𝑥 × 𝑦 ) ) |
| 13 |
10 11 12
|
mpoeq123dv |
⊢ ( 𝑡 = 𝑇 → ( 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑡 ↦ ( 𝑥 × 𝑦 ) ) = ( 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑇 ↦ ( 𝑥 × 𝑦 ) ) ) |
| 14 |
13
|
rneqd |
⊢ ( 𝑡 = 𝑇 → ran ( 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑡 ↦ ( 𝑥 × 𝑦 ) ) = ran ( 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑇 ↦ ( 𝑥 × 𝑦 ) ) ) |
| 15 |
14
|
fveq2d |
⊢ ( 𝑡 = 𝑇 → ( sigaGen ‘ ran ( 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑡 ↦ ( 𝑥 × 𝑦 ) ) ) = ( sigaGen ‘ ran ( 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑇 ↦ ( 𝑥 × 𝑦 ) ) ) ) |
| 16 |
|
df-sx |
⊢ ×s = ( 𝑠 ∈ V , 𝑡 ∈ V ↦ ( sigaGen ‘ ran ( 𝑥 ∈ 𝑠 , 𝑦 ∈ 𝑡 ↦ ( 𝑥 × 𝑦 ) ) ) ) |
| 17 |
|
fvex |
⊢ ( sigaGen ‘ ran ( 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑇 ↦ ( 𝑥 × 𝑦 ) ) ) ∈ V |
| 18 |
9 15 16 17
|
ovmpo |
⊢ ( ( 𝑆 ∈ V ∧ 𝑇 ∈ V ) → ( 𝑆 ×s 𝑇 ) = ( sigaGen ‘ ran ( 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑇 ↦ ( 𝑥 × 𝑦 ) ) ) ) |
| 19 |
2 3 18
|
syl2an |
⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑇 ∈ 𝑊 ) → ( 𝑆 ×s 𝑇 ) = ( sigaGen ‘ ran ( 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑇 ↦ ( 𝑥 × 𝑦 ) ) ) ) |
| 20 |
1
|
fveq2i |
⊢ ( sigaGen ‘ 𝐴 ) = ( sigaGen ‘ ran ( 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑇 ↦ ( 𝑥 × 𝑦 ) ) ) |
| 21 |
19 20
|
eqtr4di |
⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑇 ∈ 𝑊 ) → ( 𝑆 ×s 𝑇 ) = ( sigaGen ‘ 𝐴 ) ) |