Metamath Proof Explorer


Theorem 2ndmbfm

Description: The second projection map is measurable with regard to the product sigma-algebra. (Contributed by Thierry Arnoux, 3-Jun-2017)

Ref Expression
Hypotheses 1stmbfm.1 φSransigAlgebra
1stmbfm.2 φTransigAlgebra
Assertion 2ndmbfm φ2ndS×TS×sTMblFnμT

Proof

Step Hyp Ref Expression
1 1stmbfm.1 φSransigAlgebra
2 1stmbfm.2 φTransigAlgebra
3 f2ndres 2ndS×T:S×TT
4 sxuni SransigAlgebraTransigAlgebraS×T=S×sT
5 1 2 4 syl2anc φS×T=S×sT
6 5 feq2d φ2ndS×T:S×TT2ndS×T:S×sTT
7 3 6 mpbii φ2ndS×T:S×sTT
8 unielsiga TransigAlgebraTT
9 2 8 syl φTT
10 sxsiga SransigAlgebraTransigAlgebraS×sTransigAlgebra
11 1 2 10 syl2anc φS×sTransigAlgebra
12 unielsiga S×sTransigAlgebraS×sTS×sT
13 11 12 syl φS×sTS×sT
14 9 13 elmapd φ2ndS×TTS×sT2ndS×T:S×sTT
15 7 14 mpbird φ2ndS×TTS×sT
16 ffn 2ndS×T:S×TT2ndS×TFnS×T
17 elpreima 2ndS×TFnS×Tz2ndS×T-1azS×T2ndS×Tza
18 3 16 17 mp2b z2ndS×T-1azS×T2ndS×Tza
19 fvres zS×T2ndS×Tz=2ndz
20 19 eleq1d zS×T2ndS×Tza2ndza
21 1st2nd2 zS×Tz=1stz2ndz
22 xp1st zS×T1stzS
23 elxp6 zS×az=1stz2ndz1stzS2ndza
24 anass z=1stz2ndz1stzS2ndzaz=1stz2ndz1stzS2ndza
25 23 24 bitr4i zS×az=1stz2ndz1stzS2ndza
26 25 baib z=1stz2ndz1stzSzS×a2ndza
27 21 22 26 syl2anc zS×TzS×a2ndza
28 20 27 bitr4d zS×T2ndS×TzazS×a
29 28 pm5.32i zS×T2ndS×TzazS×TzS×a
30 18 29 bitri z2ndS×T-1azS×TzS×a
31 sgon TransigAlgebraTsigAlgebraT
32 sigasspw TsigAlgebraTT𝒫T
33 pwssb T𝒫TaTaT
34 33 biimpi T𝒫TaTaT
35 2 31 32 34 4syl φaTaT
36 35 r19.21bi φaTaT
37 xpss2 aTS×aS×T
38 36 37 syl φaTS×aS×T
39 38 sseld φaTzS×azS×T
40 39 pm4.71rd φaTzS×azS×TzS×a
41 30 40 bitr4id φaTz2ndS×T-1azS×a
42 41 eqrdv φaT2ndS×T-1a=S×a
43 1 adantr φaTSransigAlgebra
44 2 adantr φaTTransigAlgebra
45 eqid S=S
46 issgon SsigAlgebraSSransigAlgebraS=S
47 1 45 46 sylanblrc φSsigAlgebraS
48 baselsiga SsigAlgebraSSS
49 47 48 syl φSS
50 49 adantr φaTSS
51 simpr φaTaT
52 elsx SransigAlgebraTransigAlgebraSSaTS×aS×sT
53 43 44 50 51 52 syl22anc φaTS×aS×sT
54 42 53 eqeltrd φaT2ndS×T-1aS×sT
55 54 ralrimiva φaT2ndS×T-1aS×sT
56 11 2 ismbfm φ2ndS×TS×sTMblFnμT2ndS×TTS×sTaT2ndS×T-1aS×sT
57 15 55 56 mpbir2and φ2ndS×TS×sTMblFnμT