Metamath Proof Explorer


Theorem imambfm

Description: If the sigma-algebra in the range of a given function is generated by a collection of basic sets K , then to check the measurability of that function, we need only consider inverse images of basic sets a . (Contributed by Thierry Arnoux, 4-Jun-2017)

Ref Expression
Hypotheses imambfm.1 φKV
imambfm.2 φSransigAlgebra
imambfm.3 φT=𝛔K
Assertion imambfm φFSMblFnμTF:STaKF-1aS

Proof

Step Hyp Ref Expression
1 imambfm.1 φKV
2 imambfm.2 φSransigAlgebra
3 imambfm.3 φT=𝛔K
4 2 adantr φFSMblFnμTSransigAlgebra
5 1 sgsiga φ𝛔KransigAlgebra
6 3 5 eqeltrd φTransigAlgebra
7 6 adantr φFSMblFnμTTransigAlgebra
8 simpr φFSMblFnμTFSMblFnμT
9 4 7 8 mbfmf φFSMblFnμTF:ST
10 2 ad2antrr φFSMblFnμTaKSransigAlgebra
11 6 ad2antrr φFSMblFnμTaKTransigAlgebra
12 simplr φFSMblFnμTaKFSMblFnμT
13 sssigagen KVK𝛔K
14 1 13 syl φK𝛔K
15 14 3 sseqtrrd φKT
16 15 ad2antrr φFSMblFnμTaKKT
17 simpr φFSMblFnμTaKaK
18 16 17 sseldd φFSMblFnμTaKaT
19 10 11 12 18 mbfmcnvima φFSMblFnμTaKF-1aS
20 19 ralrimiva φFSMblFnμTaKF-1aS
21 9 20 jca φFSMblFnμTF:STaKF-1aS
22 unielsiga TransigAlgebraTT
23 6 22 syl φTT
24 23 adantr φF:STaKF-1aSTT
25 unielsiga SransigAlgebraSS
26 2 25 syl φSS
27 26 adantr φF:STaKF-1aSSS
28 simprl φF:STaKF-1aSF:ST
29 elmapg TTSSFTSF:ST
30 29 biimpar TTSSF:STFTS
31 24 27 28 30 syl21anc φF:STaKF-1aSFTS
32 3 adantr φF:STaKF-1aST=𝛔K
33 simpl φF:STaKF-1aSφ
34 ssrab2 aT|F-1aST
35 pwuni T𝒫T
36 34 35 sstri aT|F-1aS𝒫T
37 36 a1i φF:STaKF-1aSaT|F-1aS𝒫T
38 fimacnv F:STF-1T=S
39 38 ad2antrl φF:STaKF-1aSF-1T=S
40 39 27 eqeltrd φF:STaKF-1aSF-1TS
41 imaeq2 a=TF-1a=F-1T
42 41 eleq1d a=TF-1aSF-1TS
43 42 elrab TaT|F-1aSTTF-1TS
44 24 40 43 sylanbrc φF:STaKF-1aSTaT|F-1aS
45 6 ad2antrr φF:STaKF-1aSxaT|F-1aSTransigAlgebra
46 45 22 syl φF:STaKF-1aSxaT|F-1aSTT
47 elrabi xaT|F-1aSxT
48 47 adantl φF:STaKF-1aSxaT|F-1aSxT
49 difelsiga TransigAlgebraTTxTTxT
50 45 46 48 49 syl3anc φF:STaKF-1aSxaT|F-1aSTxT
51 simplrl φF:STaKF-1aSxaT|F-1aSF:ST
52 ffun F:STFunF
53 difpreima FunFF-1Tx=F-1TF-1x
54 51 52 53 3syl φF:STaKF-1aSxaT|F-1aSF-1Tx=F-1TF-1x
55 39 difeq1d φF:STaKF-1aSF-1TF-1x=SF-1x
56 55 adantr φF:STaKF-1aSxaT|F-1aSF-1TF-1x=SF-1x
57 2 ad2antrr φF:STaKF-1aSxaT|F-1aSSransigAlgebra
58 57 25 syl φF:STaKF-1aSxaT|F-1aSSS
59 imaeq2 a=xF-1a=F-1x
60 59 eleq1d a=xF-1aSF-1xS
61 60 elrab xaT|F-1aSxTF-1xS
62 61 simprbi xaT|F-1aSF-1xS
63 62 adantl φF:STaKF-1aSxaT|F-1aSF-1xS
64 difelsiga SransigAlgebraSSF-1xSSF-1xS
65 57 58 63 64 syl3anc φF:STaKF-1aSxaT|F-1aSSF-1xS
66 56 65 eqeltrd φF:STaKF-1aSxaT|F-1aSF-1TF-1xS
67 54 66 eqeltrd φF:STaKF-1aSxaT|F-1aSF-1TxS
68 imaeq2 a=TxF-1a=F-1Tx
69 68 eleq1d a=TxF-1aSF-1TxS
70 69 elrab TxaT|F-1aSTxTF-1TxS
71 50 67 70 sylanbrc φF:STaKF-1aSxaT|F-1aSTxaT|F-1aS
72 71 ralrimiva φF:STaKF-1aSxaT|F-1aSTxaT|F-1aS
73 6 ad3antrrr φF:STaKF-1aSx𝒫aT|F-1aSxωTransigAlgebra
74 34 sspwi 𝒫aT|F-1aS𝒫T
75 74 sseli x𝒫aT|F-1aSx𝒫T
76 75 ad2antlr φF:STaKF-1aSx𝒫aT|F-1aSxωx𝒫T
77 simpr φF:STaKF-1aSx𝒫aT|F-1aSxωxω
78 sigaclcu TransigAlgebrax𝒫TxωxT
79 73 76 77 78 syl3anc φF:STaKF-1aSx𝒫aT|F-1aSxωxT
80 simpllr φF:STaKF-1aSx𝒫aT|F-1aSxωF:STaKF-1aS
81 80 simpld φF:STaKF-1aSx𝒫aT|F-1aSxωF:ST
82 unipreima FunFF-1x=yxF-1y
83 81 52 82 3syl φF:STaKF-1aSx𝒫aT|F-1aSxωF-1x=yxF-1y
84 2 ad3antrrr φF:STaKF-1aSx𝒫aT|F-1aSxωSransigAlgebra
85 simpr φF:STaKF-1aSx𝒫aT|F-1aSxωyxyx
86 simpllr φF:STaKF-1aSx𝒫aT|F-1aSxωyxx𝒫aT|F-1aS
87 elelpwi yxx𝒫aT|F-1aSyaT|F-1aS
88 85 86 87 syl2anc φF:STaKF-1aSx𝒫aT|F-1aSxωyxyaT|F-1aS
89 imaeq2 a=yF-1a=F-1y
90 89 eleq1d a=yF-1aSF-1yS
91 90 elrab yaT|F-1aSyTF-1yS
92 91 simprbi yaT|F-1aSF-1yS
93 88 92 syl φF:STaKF-1aSx𝒫aT|F-1aSxωyxF-1yS
94 93 ralrimiva φF:STaKF-1aSx𝒫aT|F-1aSxωyxF-1yS
95 nfcv _yx
96 95 sigaclcuni SransigAlgebrayxF-1ySxωyxF-1yS
97 84 94 77 96 syl3anc φF:STaKF-1aSx𝒫aT|F-1aSxωyxF-1yS
98 83 97 eqeltrd φF:STaKF-1aSx𝒫aT|F-1aSxωF-1xS
99 imaeq2 a=xF-1a=F-1x
100 99 eleq1d a=xF-1aSF-1xS
101 100 elrab xaT|F-1aSxTF-1xS
102 79 98 101 sylanbrc φF:STaKF-1aSx𝒫aT|F-1aSxωxaT|F-1aS
103 102 ex φF:STaKF-1aSx𝒫aT|F-1aSxωxaT|F-1aS
104 103 ralrimiva φF:STaKF-1aSx𝒫aT|F-1aSxωxaT|F-1aS
105 44 72 104 3jca φF:STaKF-1aSTaT|F-1aSxaT|F-1aSTxaT|F-1aSx𝒫aT|F-1aSxωxaT|F-1aS
106 rabexg TransigAlgebraaT|F-1aSV
107 issiga aT|F-1aSVaT|F-1aSsigAlgebraTaT|F-1aS𝒫TTaT|F-1aSxaT|F-1aSTxaT|F-1aSx𝒫aT|F-1aSxωxaT|F-1aS
108 6 106 107 3syl φaT|F-1aSsigAlgebraTaT|F-1aS𝒫TTaT|F-1aSxaT|F-1aSTxaT|F-1aSx𝒫aT|F-1aSxωxaT|F-1aS
109 108 biimpar φaT|F-1aS𝒫TTaT|F-1aSxaT|F-1aSTxaT|F-1aSx𝒫aT|F-1aSxωxaT|F-1aSaT|F-1aSsigAlgebraT
110 33 37 105 109 syl12anc φF:STaKF-1aSaT|F-1aSsigAlgebraT
111 3 unieqd φT=𝛔K
112 unisg KV𝛔K=K
113 1 112 syl φ𝛔K=K
114 111 113 eqtrd φT=K
115 114 fveq2d φsigAlgebraT=sigAlgebraK
116 115 eleq2d φaT|F-1aSsigAlgebraTaT|F-1aSsigAlgebraK
117 116 adantr φF:STaKF-1aSaT|F-1aSsigAlgebraTaT|F-1aSsigAlgebraK
118 110 117 mpbid φF:STaKF-1aSaT|F-1aSsigAlgebraK
119 15 adantr φF:STaKF-1aSKT
120 simprr φF:STaKF-1aSaKF-1aS
121 ssrab KaT|F-1aSKTaKF-1aS
122 119 120 121 sylanbrc φF:STaKF-1aSKaT|F-1aS
123 sigagenss aT|F-1aSsigAlgebraKKaT|F-1aS𝛔KaT|F-1aS
124 118 122 123 syl2anc φF:STaKF-1aS𝛔KaT|F-1aS
125 32 124 eqsstrd φF:STaKF-1aSTaT|F-1aS
126 34 a1i φF:STaKF-1aSaT|F-1aST
127 125 126 eqssd φF:STaKF-1aST=aT|F-1aS
128 rabid2 T=aT|F-1aSaTF-1aS
129 127 128 sylib φF:STaKF-1aSaTF-1aS
130 2 adantr φF:STaKF-1aSSransigAlgebra
131 6 adantr φF:STaKF-1aSTransigAlgebra
132 130 131 ismbfm φF:STaKF-1aSFSMblFnμTFTSaTF-1aS
133 31 129 132 mpbir2and φF:STaKF-1aSFSMblFnμT
134 21 133 impbida φFSMblFnμTF:STaKF-1aS