Step |
Hyp |
Ref |
Expression |
1 |
|
imambfm.1 |
⊢ ( 𝜑 → 𝐾 ∈ V ) |
2 |
|
imambfm.2 |
⊢ ( 𝜑 → 𝑆 ∈ ∪ ran sigAlgebra ) |
3 |
|
imambfm.3 |
⊢ ( 𝜑 → 𝑇 = ( sigaGen ‘ 𝐾 ) ) |
4 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑆 MblFnM 𝑇 ) ) → 𝑆 ∈ ∪ ran sigAlgebra ) |
5 |
1
|
sgsiga |
⊢ ( 𝜑 → ( sigaGen ‘ 𝐾 ) ∈ ∪ ran sigAlgebra ) |
6 |
3 5
|
eqeltrd |
⊢ ( 𝜑 → 𝑇 ∈ ∪ ran sigAlgebra ) |
7 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑆 MblFnM 𝑇 ) ) → 𝑇 ∈ ∪ ran sigAlgebra ) |
8 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑆 MblFnM 𝑇 ) ) → 𝐹 ∈ ( 𝑆 MblFnM 𝑇 ) ) |
9 |
4 7 8
|
mbfmf |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑆 MblFnM 𝑇 ) ) → 𝐹 : ∪ 𝑆 ⟶ ∪ 𝑇 ) |
10 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑆 MblFnM 𝑇 ) ) ∧ 𝑎 ∈ 𝐾 ) → 𝑆 ∈ ∪ ran sigAlgebra ) |
11 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑆 MblFnM 𝑇 ) ) ∧ 𝑎 ∈ 𝐾 ) → 𝑇 ∈ ∪ ran sigAlgebra ) |
12 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑆 MblFnM 𝑇 ) ) ∧ 𝑎 ∈ 𝐾 ) → 𝐹 ∈ ( 𝑆 MblFnM 𝑇 ) ) |
13 |
|
sssigagen |
⊢ ( 𝐾 ∈ V → 𝐾 ⊆ ( sigaGen ‘ 𝐾 ) ) |
14 |
1 13
|
syl |
⊢ ( 𝜑 → 𝐾 ⊆ ( sigaGen ‘ 𝐾 ) ) |
15 |
14 3
|
sseqtrrd |
⊢ ( 𝜑 → 𝐾 ⊆ 𝑇 ) |
16 |
15
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑆 MblFnM 𝑇 ) ) ∧ 𝑎 ∈ 𝐾 ) → 𝐾 ⊆ 𝑇 ) |
17 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑆 MblFnM 𝑇 ) ) ∧ 𝑎 ∈ 𝐾 ) → 𝑎 ∈ 𝐾 ) |
18 |
16 17
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑆 MblFnM 𝑇 ) ) ∧ 𝑎 ∈ 𝐾 ) → 𝑎 ∈ 𝑇 ) |
19 |
10 11 12 18
|
mbfmcnvima |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑆 MblFnM 𝑇 ) ) ∧ 𝑎 ∈ 𝐾 ) → ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 ) |
20 |
19
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑆 MblFnM 𝑇 ) ) → ∀ 𝑎 ∈ 𝐾 ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 ) |
21 |
9 20
|
jca |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑆 MblFnM 𝑇 ) ) → ( 𝐹 : ∪ 𝑆 ⟶ ∪ 𝑇 ∧ ∀ 𝑎 ∈ 𝐾 ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 ) ) |
22 |
|
unielsiga |
⊢ ( 𝑇 ∈ ∪ ran sigAlgebra → ∪ 𝑇 ∈ 𝑇 ) |
23 |
6 22
|
syl |
⊢ ( 𝜑 → ∪ 𝑇 ∈ 𝑇 ) |
24 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 : ∪ 𝑆 ⟶ ∪ 𝑇 ∧ ∀ 𝑎 ∈ 𝐾 ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 ) ) → ∪ 𝑇 ∈ 𝑇 ) |
25 |
|
unielsiga |
⊢ ( 𝑆 ∈ ∪ ran sigAlgebra → ∪ 𝑆 ∈ 𝑆 ) |
26 |
2 25
|
syl |
⊢ ( 𝜑 → ∪ 𝑆 ∈ 𝑆 ) |
27 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 : ∪ 𝑆 ⟶ ∪ 𝑇 ∧ ∀ 𝑎 ∈ 𝐾 ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 ) ) → ∪ 𝑆 ∈ 𝑆 ) |
28 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝐹 : ∪ 𝑆 ⟶ ∪ 𝑇 ∧ ∀ 𝑎 ∈ 𝐾 ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 ) ) → 𝐹 : ∪ 𝑆 ⟶ ∪ 𝑇 ) |
29 |
|
elmapg |
⊢ ( ( ∪ 𝑇 ∈ 𝑇 ∧ ∪ 𝑆 ∈ 𝑆 ) → ( 𝐹 ∈ ( ∪ 𝑇 ↑m ∪ 𝑆 ) ↔ 𝐹 : ∪ 𝑆 ⟶ ∪ 𝑇 ) ) |
30 |
29
|
biimpar |
⊢ ( ( ( ∪ 𝑇 ∈ 𝑇 ∧ ∪ 𝑆 ∈ 𝑆 ) ∧ 𝐹 : ∪ 𝑆 ⟶ ∪ 𝑇 ) → 𝐹 ∈ ( ∪ 𝑇 ↑m ∪ 𝑆 ) ) |
31 |
24 27 28 30
|
syl21anc |
⊢ ( ( 𝜑 ∧ ( 𝐹 : ∪ 𝑆 ⟶ ∪ 𝑇 ∧ ∀ 𝑎 ∈ 𝐾 ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 ) ) → 𝐹 ∈ ( ∪ 𝑇 ↑m ∪ 𝑆 ) ) |
32 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 : ∪ 𝑆 ⟶ ∪ 𝑇 ∧ ∀ 𝑎 ∈ 𝐾 ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 ) ) → 𝑇 = ( sigaGen ‘ 𝐾 ) ) |
33 |
|
simpl |
⊢ ( ( 𝜑 ∧ ( 𝐹 : ∪ 𝑆 ⟶ ∪ 𝑇 ∧ ∀ 𝑎 ∈ 𝐾 ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 ) ) → 𝜑 ) |
34 |
|
ssrab2 |
⊢ { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ⊆ 𝑇 |
35 |
|
pwuni |
⊢ 𝑇 ⊆ 𝒫 ∪ 𝑇 |
36 |
34 35
|
sstri |
⊢ { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ⊆ 𝒫 ∪ 𝑇 |
37 |
36
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝐹 : ∪ 𝑆 ⟶ ∪ 𝑇 ∧ ∀ 𝑎 ∈ 𝐾 ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 ) ) → { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ⊆ 𝒫 ∪ 𝑇 ) |
38 |
|
fimacnv |
⊢ ( 𝐹 : ∪ 𝑆 ⟶ ∪ 𝑇 → ( ◡ 𝐹 “ ∪ 𝑇 ) = ∪ 𝑆 ) |
39 |
38
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝐹 : ∪ 𝑆 ⟶ ∪ 𝑇 ∧ ∀ 𝑎 ∈ 𝐾 ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 ) ) → ( ◡ 𝐹 “ ∪ 𝑇 ) = ∪ 𝑆 ) |
40 |
39 27
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ( 𝐹 : ∪ 𝑆 ⟶ ∪ 𝑇 ∧ ∀ 𝑎 ∈ 𝐾 ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 ) ) → ( ◡ 𝐹 “ ∪ 𝑇 ) ∈ 𝑆 ) |
41 |
|
imaeq2 |
⊢ ( 𝑎 = ∪ 𝑇 → ( ◡ 𝐹 “ 𝑎 ) = ( ◡ 𝐹 “ ∪ 𝑇 ) ) |
42 |
41
|
eleq1d |
⊢ ( 𝑎 = ∪ 𝑇 → ( ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 ↔ ( ◡ 𝐹 “ ∪ 𝑇 ) ∈ 𝑆 ) ) |
43 |
42
|
elrab |
⊢ ( ∪ 𝑇 ∈ { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ↔ ( ∪ 𝑇 ∈ 𝑇 ∧ ( ◡ 𝐹 “ ∪ 𝑇 ) ∈ 𝑆 ) ) |
44 |
24 40 43
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( 𝐹 : ∪ 𝑆 ⟶ ∪ 𝑇 ∧ ∀ 𝑎 ∈ 𝐾 ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 ) ) → ∪ 𝑇 ∈ { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ) |
45 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 : ∪ 𝑆 ⟶ ∪ 𝑇 ∧ ∀ 𝑎 ∈ 𝐾 ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 ) ) ∧ 𝑥 ∈ { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ) → 𝑇 ∈ ∪ ran sigAlgebra ) |
46 |
45 22
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 : ∪ 𝑆 ⟶ ∪ 𝑇 ∧ ∀ 𝑎 ∈ 𝐾 ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 ) ) ∧ 𝑥 ∈ { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ) → ∪ 𝑇 ∈ 𝑇 ) |
47 |
|
elrabi |
⊢ ( 𝑥 ∈ { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } → 𝑥 ∈ 𝑇 ) |
48 |
47
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 : ∪ 𝑆 ⟶ ∪ 𝑇 ∧ ∀ 𝑎 ∈ 𝐾 ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 ) ) ∧ 𝑥 ∈ { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ) → 𝑥 ∈ 𝑇 ) |
49 |
|
difelsiga |
⊢ ( ( 𝑇 ∈ ∪ ran sigAlgebra ∧ ∪ 𝑇 ∈ 𝑇 ∧ 𝑥 ∈ 𝑇 ) → ( ∪ 𝑇 ∖ 𝑥 ) ∈ 𝑇 ) |
50 |
45 46 48 49
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 : ∪ 𝑆 ⟶ ∪ 𝑇 ∧ ∀ 𝑎 ∈ 𝐾 ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 ) ) ∧ 𝑥 ∈ { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ) → ( ∪ 𝑇 ∖ 𝑥 ) ∈ 𝑇 ) |
51 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 : ∪ 𝑆 ⟶ ∪ 𝑇 ∧ ∀ 𝑎 ∈ 𝐾 ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 ) ) ∧ 𝑥 ∈ { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ) → 𝐹 : ∪ 𝑆 ⟶ ∪ 𝑇 ) |
52 |
|
ffun |
⊢ ( 𝐹 : ∪ 𝑆 ⟶ ∪ 𝑇 → Fun 𝐹 ) |
53 |
|
difpreima |
⊢ ( Fun 𝐹 → ( ◡ 𝐹 “ ( ∪ 𝑇 ∖ 𝑥 ) ) = ( ( ◡ 𝐹 “ ∪ 𝑇 ) ∖ ( ◡ 𝐹 “ 𝑥 ) ) ) |
54 |
51 52 53
|
3syl |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 : ∪ 𝑆 ⟶ ∪ 𝑇 ∧ ∀ 𝑎 ∈ 𝐾 ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 ) ) ∧ 𝑥 ∈ { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ) → ( ◡ 𝐹 “ ( ∪ 𝑇 ∖ 𝑥 ) ) = ( ( ◡ 𝐹 “ ∪ 𝑇 ) ∖ ( ◡ 𝐹 “ 𝑥 ) ) ) |
55 |
39
|
difeq1d |
⊢ ( ( 𝜑 ∧ ( 𝐹 : ∪ 𝑆 ⟶ ∪ 𝑇 ∧ ∀ 𝑎 ∈ 𝐾 ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 ) ) → ( ( ◡ 𝐹 “ ∪ 𝑇 ) ∖ ( ◡ 𝐹 “ 𝑥 ) ) = ( ∪ 𝑆 ∖ ( ◡ 𝐹 “ 𝑥 ) ) ) |
56 |
55
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 : ∪ 𝑆 ⟶ ∪ 𝑇 ∧ ∀ 𝑎 ∈ 𝐾 ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 ) ) ∧ 𝑥 ∈ { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ) → ( ( ◡ 𝐹 “ ∪ 𝑇 ) ∖ ( ◡ 𝐹 “ 𝑥 ) ) = ( ∪ 𝑆 ∖ ( ◡ 𝐹 “ 𝑥 ) ) ) |
57 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 : ∪ 𝑆 ⟶ ∪ 𝑇 ∧ ∀ 𝑎 ∈ 𝐾 ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 ) ) ∧ 𝑥 ∈ { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ) → 𝑆 ∈ ∪ ran sigAlgebra ) |
58 |
57 25
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 : ∪ 𝑆 ⟶ ∪ 𝑇 ∧ ∀ 𝑎 ∈ 𝐾 ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 ) ) ∧ 𝑥 ∈ { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ) → ∪ 𝑆 ∈ 𝑆 ) |
59 |
|
imaeq2 |
⊢ ( 𝑎 = 𝑥 → ( ◡ 𝐹 “ 𝑎 ) = ( ◡ 𝐹 “ 𝑥 ) ) |
60 |
59
|
eleq1d |
⊢ ( 𝑎 = 𝑥 → ( ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 ↔ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝑆 ) ) |
61 |
60
|
elrab |
⊢ ( 𝑥 ∈ { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ↔ ( 𝑥 ∈ 𝑇 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝑆 ) ) |
62 |
61
|
simprbi |
⊢ ( 𝑥 ∈ { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } → ( ◡ 𝐹 “ 𝑥 ) ∈ 𝑆 ) |
63 |
62
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 : ∪ 𝑆 ⟶ ∪ 𝑇 ∧ ∀ 𝑎 ∈ 𝐾 ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 ) ) ∧ 𝑥 ∈ { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ) → ( ◡ 𝐹 “ 𝑥 ) ∈ 𝑆 ) |
64 |
|
difelsiga |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ ∪ 𝑆 ∈ 𝑆 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝑆 ) → ( ∪ 𝑆 ∖ ( ◡ 𝐹 “ 𝑥 ) ) ∈ 𝑆 ) |
65 |
57 58 63 64
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 : ∪ 𝑆 ⟶ ∪ 𝑇 ∧ ∀ 𝑎 ∈ 𝐾 ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 ) ) ∧ 𝑥 ∈ { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ) → ( ∪ 𝑆 ∖ ( ◡ 𝐹 “ 𝑥 ) ) ∈ 𝑆 ) |
66 |
56 65
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 : ∪ 𝑆 ⟶ ∪ 𝑇 ∧ ∀ 𝑎 ∈ 𝐾 ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 ) ) ∧ 𝑥 ∈ { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ) → ( ( ◡ 𝐹 “ ∪ 𝑇 ) ∖ ( ◡ 𝐹 “ 𝑥 ) ) ∈ 𝑆 ) |
67 |
54 66
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 : ∪ 𝑆 ⟶ ∪ 𝑇 ∧ ∀ 𝑎 ∈ 𝐾 ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 ) ) ∧ 𝑥 ∈ { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ) → ( ◡ 𝐹 “ ( ∪ 𝑇 ∖ 𝑥 ) ) ∈ 𝑆 ) |
68 |
|
imaeq2 |
⊢ ( 𝑎 = ( ∪ 𝑇 ∖ 𝑥 ) → ( ◡ 𝐹 “ 𝑎 ) = ( ◡ 𝐹 “ ( ∪ 𝑇 ∖ 𝑥 ) ) ) |
69 |
68
|
eleq1d |
⊢ ( 𝑎 = ( ∪ 𝑇 ∖ 𝑥 ) → ( ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 ↔ ( ◡ 𝐹 “ ( ∪ 𝑇 ∖ 𝑥 ) ) ∈ 𝑆 ) ) |
70 |
69
|
elrab |
⊢ ( ( ∪ 𝑇 ∖ 𝑥 ) ∈ { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ↔ ( ( ∪ 𝑇 ∖ 𝑥 ) ∈ 𝑇 ∧ ( ◡ 𝐹 “ ( ∪ 𝑇 ∖ 𝑥 ) ) ∈ 𝑆 ) ) |
71 |
50 67 70
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 : ∪ 𝑆 ⟶ ∪ 𝑇 ∧ ∀ 𝑎 ∈ 𝐾 ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 ) ) ∧ 𝑥 ∈ { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ) → ( ∪ 𝑇 ∖ 𝑥 ) ∈ { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ) |
72 |
71
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ( 𝐹 : ∪ 𝑆 ⟶ ∪ 𝑇 ∧ ∀ 𝑎 ∈ 𝐾 ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 ) ) → ∀ 𝑥 ∈ { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ( ∪ 𝑇 ∖ 𝑥 ) ∈ { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ) |
73 |
6
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 : ∪ 𝑆 ⟶ ∪ 𝑇 ∧ ∀ 𝑎 ∈ 𝐾 ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 ) ) ∧ 𝑥 ∈ 𝒫 { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ) ∧ 𝑥 ≼ ω ) → 𝑇 ∈ ∪ ran sigAlgebra ) |
74 |
34
|
sspwi |
⊢ 𝒫 { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ⊆ 𝒫 𝑇 |
75 |
74
|
sseli |
⊢ ( 𝑥 ∈ 𝒫 { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } → 𝑥 ∈ 𝒫 𝑇 ) |
76 |
75
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 : ∪ 𝑆 ⟶ ∪ 𝑇 ∧ ∀ 𝑎 ∈ 𝐾 ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 ) ) ∧ 𝑥 ∈ 𝒫 { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ) ∧ 𝑥 ≼ ω ) → 𝑥 ∈ 𝒫 𝑇 ) |
77 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 : ∪ 𝑆 ⟶ ∪ 𝑇 ∧ ∀ 𝑎 ∈ 𝐾 ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 ) ) ∧ 𝑥 ∈ 𝒫 { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ) ∧ 𝑥 ≼ ω ) → 𝑥 ≼ ω ) |
78 |
|
sigaclcu |
⊢ ( ( 𝑇 ∈ ∪ ran sigAlgebra ∧ 𝑥 ∈ 𝒫 𝑇 ∧ 𝑥 ≼ ω ) → ∪ 𝑥 ∈ 𝑇 ) |
79 |
73 76 77 78
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 : ∪ 𝑆 ⟶ ∪ 𝑇 ∧ ∀ 𝑎 ∈ 𝐾 ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 ) ) ∧ 𝑥 ∈ 𝒫 { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ) ∧ 𝑥 ≼ ω ) → ∪ 𝑥 ∈ 𝑇 ) |
80 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 : ∪ 𝑆 ⟶ ∪ 𝑇 ∧ ∀ 𝑎 ∈ 𝐾 ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 ) ) ∧ 𝑥 ∈ 𝒫 { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ) ∧ 𝑥 ≼ ω ) → ( 𝐹 : ∪ 𝑆 ⟶ ∪ 𝑇 ∧ ∀ 𝑎 ∈ 𝐾 ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 ) ) |
81 |
80
|
simpld |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 : ∪ 𝑆 ⟶ ∪ 𝑇 ∧ ∀ 𝑎 ∈ 𝐾 ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 ) ) ∧ 𝑥 ∈ 𝒫 { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ) ∧ 𝑥 ≼ ω ) → 𝐹 : ∪ 𝑆 ⟶ ∪ 𝑇 ) |
82 |
|
unipreima |
⊢ ( Fun 𝐹 → ( ◡ 𝐹 “ ∪ 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( ◡ 𝐹 “ 𝑦 ) ) |
83 |
81 52 82
|
3syl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 : ∪ 𝑆 ⟶ ∪ 𝑇 ∧ ∀ 𝑎 ∈ 𝐾 ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 ) ) ∧ 𝑥 ∈ 𝒫 { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ) ∧ 𝑥 ≼ ω ) → ( ◡ 𝐹 “ ∪ 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( ◡ 𝐹 “ 𝑦 ) ) |
84 |
2
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 : ∪ 𝑆 ⟶ ∪ 𝑇 ∧ ∀ 𝑎 ∈ 𝐾 ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 ) ) ∧ 𝑥 ∈ 𝒫 { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ) ∧ 𝑥 ≼ ω ) → 𝑆 ∈ ∪ ran sigAlgebra ) |
85 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝐹 : ∪ 𝑆 ⟶ ∪ 𝑇 ∧ ∀ 𝑎 ∈ 𝐾 ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 ) ) ∧ 𝑥 ∈ 𝒫 { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ) ∧ 𝑥 ≼ ω ) ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ 𝑥 ) |
86 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝐹 : ∪ 𝑆 ⟶ ∪ 𝑇 ∧ ∀ 𝑎 ∈ 𝐾 ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 ) ) ∧ 𝑥 ∈ 𝒫 { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ) ∧ 𝑥 ≼ ω ) ∧ 𝑦 ∈ 𝑥 ) → 𝑥 ∈ 𝒫 { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ) |
87 |
|
elelpwi |
⊢ ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝒫 { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ) → 𝑦 ∈ { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ) |
88 |
85 86 87
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝐹 : ∪ 𝑆 ⟶ ∪ 𝑇 ∧ ∀ 𝑎 ∈ 𝐾 ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 ) ) ∧ 𝑥 ∈ 𝒫 { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ) ∧ 𝑥 ≼ ω ) ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ) |
89 |
|
imaeq2 |
⊢ ( 𝑎 = 𝑦 → ( ◡ 𝐹 “ 𝑎 ) = ( ◡ 𝐹 “ 𝑦 ) ) |
90 |
89
|
eleq1d |
⊢ ( 𝑎 = 𝑦 → ( ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 ↔ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝑆 ) ) |
91 |
90
|
elrab |
⊢ ( 𝑦 ∈ { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ↔ ( 𝑦 ∈ 𝑇 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝑆 ) ) |
92 |
91
|
simprbi |
⊢ ( 𝑦 ∈ { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } → ( ◡ 𝐹 “ 𝑦 ) ∈ 𝑆 ) |
93 |
88 92
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝐹 : ∪ 𝑆 ⟶ ∪ 𝑇 ∧ ∀ 𝑎 ∈ 𝐾 ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 ) ) ∧ 𝑥 ∈ 𝒫 { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ) ∧ 𝑥 ≼ ω ) ∧ 𝑦 ∈ 𝑥 ) → ( ◡ 𝐹 “ 𝑦 ) ∈ 𝑆 ) |
94 |
93
|
ralrimiva |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 : ∪ 𝑆 ⟶ ∪ 𝑇 ∧ ∀ 𝑎 ∈ 𝐾 ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 ) ) ∧ 𝑥 ∈ 𝒫 { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ) ∧ 𝑥 ≼ ω ) → ∀ 𝑦 ∈ 𝑥 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝑆 ) |
95 |
|
nfcv |
⊢ Ⅎ 𝑦 𝑥 |
96 |
95
|
sigaclcuni |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ ∀ 𝑦 ∈ 𝑥 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝑆 ∧ 𝑥 ≼ ω ) → ∪ 𝑦 ∈ 𝑥 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝑆 ) |
97 |
84 94 77 96
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 : ∪ 𝑆 ⟶ ∪ 𝑇 ∧ ∀ 𝑎 ∈ 𝐾 ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 ) ) ∧ 𝑥 ∈ 𝒫 { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ) ∧ 𝑥 ≼ ω ) → ∪ 𝑦 ∈ 𝑥 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝑆 ) |
98 |
83 97
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 : ∪ 𝑆 ⟶ ∪ 𝑇 ∧ ∀ 𝑎 ∈ 𝐾 ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 ) ) ∧ 𝑥 ∈ 𝒫 { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ) ∧ 𝑥 ≼ ω ) → ( ◡ 𝐹 “ ∪ 𝑥 ) ∈ 𝑆 ) |
99 |
|
imaeq2 |
⊢ ( 𝑎 = ∪ 𝑥 → ( ◡ 𝐹 “ 𝑎 ) = ( ◡ 𝐹 “ ∪ 𝑥 ) ) |
100 |
99
|
eleq1d |
⊢ ( 𝑎 = ∪ 𝑥 → ( ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 ↔ ( ◡ 𝐹 “ ∪ 𝑥 ) ∈ 𝑆 ) ) |
101 |
100
|
elrab |
⊢ ( ∪ 𝑥 ∈ { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ↔ ( ∪ 𝑥 ∈ 𝑇 ∧ ( ◡ 𝐹 “ ∪ 𝑥 ) ∈ 𝑆 ) ) |
102 |
79 98 101
|
sylanbrc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 : ∪ 𝑆 ⟶ ∪ 𝑇 ∧ ∀ 𝑎 ∈ 𝐾 ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 ) ) ∧ 𝑥 ∈ 𝒫 { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ) ∧ 𝑥 ≼ ω ) → ∪ 𝑥 ∈ { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ) |
103 |
102
|
ex |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 : ∪ 𝑆 ⟶ ∪ 𝑇 ∧ ∀ 𝑎 ∈ 𝐾 ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 ) ) ∧ 𝑥 ∈ 𝒫 { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ) → ( 𝑥 ≼ ω → ∪ 𝑥 ∈ { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ) ) |
104 |
103
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ( 𝐹 : ∪ 𝑆 ⟶ ∪ 𝑇 ∧ ∀ 𝑎 ∈ 𝐾 ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 ) ) → ∀ 𝑥 ∈ 𝒫 { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ( 𝑥 ≼ ω → ∪ 𝑥 ∈ { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ) ) |
105 |
44 72 104
|
3jca |
⊢ ( ( 𝜑 ∧ ( 𝐹 : ∪ 𝑆 ⟶ ∪ 𝑇 ∧ ∀ 𝑎 ∈ 𝐾 ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 ) ) → ( ∪ 𝑇 ∈ { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ∧ ∀ 𝑥 ∈ { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ( ∪ 𝑇 ∖ 𝑥 ) ∈ { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ∧ ∀ 𝑥 ∈ 𝒫 { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ( 𝑥 ≼ ω → ∪ 𝑥 ∈ { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ) ) ) |
106 |
|
rabexg |
⊢ ( 𝑇 ∈ ∪ ran sigAlgebra → { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ∈ V ) |
107 |
|
issiga |
⊢ ( { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ∈ V → ( { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ∈ ( sigAlgebra ‘ ∪ 𝑇 ) ↔ ( { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ⊆ 𝒫 ∪ 𝑇 ∧ ( ∪ 𝑇 ∈ { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ∧ ∀ 𝑥 ∈ { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ( ∪ 𝑇 ∖ 𝑥 ) ∈ { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ∧ ∀ 𝑥 ∈ 𝒫 { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ( 𝑥 ≼ ω → ∪ 𝑥 ∈ { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ) ) ) ) ) |
108 |
6 106 107
|
3syl |
⊢ ( 𝜑 → ( { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ∈ ( sigAlgebra ‘ ∪ 𝑇 ) ↔ ( { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ⊆ 𝒫 ∪ 𝑇 ∧ ( ∪ 𝑇 ∈ { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ∧ ∀ 𝑥 ∈ { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ( ∪ 𝑇 ∖ 𝑥 ) ∈ { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ∧ ∀ 𝑥 ∈ 𝒫 { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ( 𝑥 ≼ ω → ∪ 𝑥 ∈ { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ) ) ) ) ) |
109 |
108
|
biimpar |
⊢ ( ( 𝜑 ∧ ( { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ⊆ 𝒫 ∪ 𝑇 ∧ ( ∪ 𝑇 ∈ { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ∧ ∀ 𝑥 ∈ { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ( ∪ 𝑇 ∖ 𝑥 ) ∈ { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ∧ ∀ 𝑥 ∈ 𝒫 { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ( 𝑥 ≼ ω → ∪ 𝑥 ∈ { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ) ) ) ) → { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ∈ ( sigAlgebra ‘ ∪ 𝑇 ) ) |
110 |
33 37 105 109
|
syl12anc |
⊢ ( ( 𝜑 ∧ ( 𝐹 : ∪ 𝑆 ⟶ ∪ 𝑇 ∧ ∀ 𝑎 ∈ 𝐾 ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 ) ) → { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ∈ ( sigAlgebra ‘ ∪ 𝑇 ) ) |
111 |
3
|
unieqd |
⊢ ( 𝜑 → ∪ 𝑇 = ∪ ( sigaGen ‘ 𝐾 ) ) |
112 |
|
unisg |
⊢ ( 𝐾 ∈ V → ∪ ( sigaGen ‘ 𝐾 ) = ∪ 𝐾 ) |
113 |
1 112
|
syl |
⊢ ( 𝜑 → ∪ ( sigaGen ‘ 𝐾 ) = ∪ 𝐾 ) |
114 |
111 113
|
eqtrd |
⊢ ( 𝜑 → ∪ 𝑇 = ∪ 𝐾 ) |
115 |
114
|
fveq2d |
⊢ ( 𝜑 → ( sigAlgebra ‘ ∪ 𝑇 ) = ( sigAlgebra ‘ ∪ 𝐾 ) ) |
116 |
115
|
eleq2d |
⊢ ( 𝜑 → ( { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ∈ ( sigAlgebra ‘ ∪ 𝑇 ) ↔ { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ∈ ( sigAlgebra ‘ ∪ 𝐾 ) ) ) |
117 |
116
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 : ∪ 𝑆 ⟶ ∪ 𝑇 ∧ ∀ 𝑎 ∈ 𝐾 ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 ) ) → ( { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ∈ ( sigAlgebra ‘ ∪ 𝑇 ) ↔ { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ∈ ( sigAlgebra ‘ ∪ 𝐾 ) ) ) |
118 |
110 117
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝐹 : ∪ 𝑆 ⟶ ∪ 𝑇 ∧ ∀ 𝑎 ∈ 𝐾 ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 ) ) → { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ∈ ( sigAlgebra ‘ ∪ 𝐾 ) ) |
119 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 : ∪ 𝑆 ⟶ ∪ 𝑇 ∧ ∀ 𝑎 ∈ 𝐾 ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 ) ) → 𝐾 ⊆ 𝑇 ) |
120 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝐹 : ∪ 𝑆 ⟶ ∪ 𝑇 ∧ ∀ 𝑎 ∈ 𝐾 ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 ) ) → ∀ 𝑎 ∈ 𝐾 ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 ) |
121 |
|
ssrab |
⊢ ( 𝐾 ⊆ { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ↔ ( 𝐾 ⊆ 𝑇 ∧ ∀ 𝑎 ∈ 𝐾 ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 ) ) |
122 |
119 120 121
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( 𝐹 : ∪ 𝑆 ⟶ ∪ 𝑇 ∧ ∀ 𝑎 ∈ 𝐾 ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 ) ) → 𝐾 ⊆ { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ) |
123 |
|
sigagenss |
⊢ ( ( { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ∈ ( sigAlgebra ‘ ∪ 𝐾 ) ∧ 𝐾 ⊆ { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ) → ( sigaGen ‘ 𝐾 ) ⊆ { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ) |
124 |
118 122 123
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝐹 : ∪ 𝑆 ⟶ ∪ 𝑇 ∧ ∀ 𝑎 ∈ 𝐾 ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 ) ) → ( sigaGen ‘ 𝐾 ) ⊆ { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ) |
125 |
32 124
|
eqsstrd |
⊢ ( ( 𝜑 ∧ ( 𝐹 : ∪ 𝑆 ⟶ ∪ 𝑇 ∧ ∀ 𝑎 ∈ 𝐾 ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 ) ) → 𝑇 ⊆ { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ) |
126 |
34
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝐹 : ∪ 𝑆 ⟶ ∪ 𝑇 ∧ ∀ 𝑎 ∈ 𝐾 ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 ) ) → { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ⊆ 𝑇 ) |
127 |
125 126
|
eqssd |
⊢ ( ( 𝜑 ∧ ( 𝐹 : ∪ 𝑆 ⟶ ∪ 𝑇 ∧ ∀ 𝑎 ∈ 𝐾 ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 ) ) → 𝑇 = { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ) |
128 |
|
rabid2 |
⊢ ( 𝑇 = { 𝑎 ∈ 𝑇 ∣ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 } ↔ ∀ 𝑎 ∈ 𝑇 ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 ) |
129 |
127 128
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝐹 : ∪ 𝑆 ⟶ ∪ 𝑇 ∧ ∀ 𝑎 ∈ 𝐾 ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 ) ) → ∀ 𝑎 ∈ 𝑇 ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 ) |
130 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 : ∪ 𝑆 ⟶ ∪ 𝑇 ∧ ∀ 𝑎 ∈ 𝐾 ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 ) ) → 𝑆 ∈ ∪ ran sigAlgebra ) |
131 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 : ∪ 𝑆 ⟶ ∪ 𝑇 ∧ ∀ 𝑎 ∈ 𝐾 ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 ) ) → 𝑇 ∈ ∪ ran sigAlgebra ) |
132 |
130 131
|
ismbfm |
⊢ ( ( 𝜑 ∧ ( 𝐹 : ∪ 𝑆 ⟶ ∪ 𝑇 ∧ ∀ 𝑎 ∈ 𝐾 ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 ) ) → ( 𝐹 ∈ ( 𝑆 MblFnM 𝑇 ) ↔ ( 𝐹 ∈ ( ∪ 𝑇 ↑m ∪ 𝑆 ) ∧ ∀ 𝑎 ∈ 𝑇 ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 ) ) ) |
133 |
31 129 132
|
mpbir2and |
⊢ ( ( 𝜑 ∧ ( 𝐹 : ∪ 𝑆 ⟶ ∪ 𝑇 ∧ ∀ 𝑎 ∈ 𝐾 ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 ) ) → 𝐹 ∈ ( 𝑆 MblFnM 𝑇 ) ) |
134 |
21 133
|
impbida |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑆 MblFnM 𝑇 ) ↔ ( 𝐹 : ∪ 𝑆 ⟶ ∪ 𝑇 ∧ ∀ 𝑎 ∈ 𝐾 ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 ) ) ) |