Metamath Proof Explorer


Theorem cnmbfm

Description: A continuous function is measurable with respect to the Borel Algebra of its domain and range. (Contributed by Thierry Arnoux, 3-Jun-2017)

Ref Expression
Hypotheses cnmbfm.1 ( 𝜑𝐹 ∈ ( 𝐽 Cn 𝐾 ) )
cnmbfm.2 ( 𝜑𝑆 = ( sigaGen ‘ 𝐽 ) )
cnmbfm.3 ( 𝜑𝑇 = ( sigaGen ‘ 𝐾 ) )
Assertion cnmbfm ( 𝜑𝐹 ∈ ( 𝑆 MblFnM 𝑇 ) )

Proof

Step Hyp Ref Expression
1 cnmbfm.1 ( 𝜑𝐹 ∈ ( 𝐽 Cn 𝐾 ) )
2 cnmbfm.2 ( 𝜑𝑆 = ( sigaGen ‘ 𝐽 ) )
3 cnmbfm.3 ( 𝜑𝑇 = ( sigaGen ‘ 𝐾 ) )
4 eqid 𝐽 = 𝐽
5 eqid 𝐾 = 𝐾
6 4 5 cnf ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐹 : 𝐽 𝐾 )
7 1 6 syl ( 𝜑𝐹 : 𝐽 𝐾 )
8 2 unieqd ( 𝜑 𝑆 = ( sigaGen ‘ 𝐽 ) )
9 cntop1 ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐽 ∈ Top )
10 unisg ( 𝐽 ∈ Top → ( sigaGen ‘ 𝐽 ) = 𝐽 )
11 1 9 10 3syl ( 𝜑 ( sigaGen ‘ 𝐽 ) = 𝐽 )
12 8 11 eqtrd ( 𝜑 𝑆 = 𝐽 )
13 3 unieqd ( 𝜑 𝑇 = ( sigaGen ‘ 𝐾 ) )
14 cntop2 ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐾 ∈ Top )
15 unisg ( 𝐾 ∈ Top → ( sigaGen ‘ 𝐾 ) = 𝐾 )
16 1 14 15 3syl ( 𝜑 ( sigaGen ‘ 𝐾 ) = 𝐾 )
17 13 16 eqtrd ( 𝜑 𝑇 = 𝐾 )
18 12 17 feq23d ( 𝜑 → ( 𝐹 : 𝑆 𝑇𝐹 : 𝐽 𝐾 ) )
19 7 18 mpbird ( 𝜑𝐹 : 𝑆 𝑇 )
20 sssigagen ( 𝐽 ∈ Top → 𝐽 ⊆ ( sigaGen ‘ 𝐽 ) )
21 1 9 20 3syl ( 𝜑𝐽 ⊆ ( sigaGen ‘ 𝐽 ) )
22 21 2 sseqtrrd ( 𝜑𝐽𝑆 )
23 22 adantr ( ( 𝜑𝑎𝐾 ) → 𝐽𝑆 )
24 cnima ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑎𝐾 ) → ( 𝐹𝑎 ) ∈ 𝐽 )
25 1 24 sylan ( ( 𝜑𝑎𝐾 ) → ( 𝐹𝑎 ) ∈ 𝐽 )
26 23 25 sseldd ( ( 𝜑𝑎𝐾 ) → ( 𝐹𝑎 ) ∈ 𝑆 )
27 26 ralrimiva ( 𝜑 → ∀ 𝑎𝐾 ( 𝐹𝑎 ) ∈ 𝑆 )
28 elex ( 𝐾 ∈ Top → 𝐾 ∈ V )
29 1 14 28 3syl ( 𝜑𝐾 ∈ V )
30 sigagensiga ( 𝐽 ∈ Top → ( sigaGen ‘ 𝐽 ) ∈ ( sigAlgebra ‘ 𝐽 ) )
31 1 9 30 3syl ( 𝜑 → ( sigaGen ‘ 𝐽 ) ∈ ( sigAlgebra ‘ 𝐽 ) )
32 2 31 eqeltrd ( 𝜑𝑆 ∈ ( sigAlgebra ‘ 𝐽 ) )
33 elrnsiga ( 𝑆 ∈ ( sigAlgebra ‘ 𝐽 ) → 𝑆 ran sigAlgebra )
34 32 33 syl ( 𝜑𝑆 ran sigAlgebra )
35 29 34 3 imambfm ( 𝜑 → ( 𝐹 ∈ ( 𝑆 MblFnM 𝑇 ) ↔ ( 𝐹 : 𝑆 𝑇 ∧ ∀ 𝑎𝐾 ( 𝐹𝑎 ) ∈ 𝑆 ) ) )
36 19 27 35 mpbir2and ( 𝜑𝐹 ∈ ( 𝑆 MblFnM 𝑇 ) )