Step |
Hyp |
Ref |
Expression |
1 |
|
cnmbfm.1 |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |
2 |
|
cnmbfm.2 |
⊢ ( 𝜑 → 𝑆 = ( sigaGen ‘ 𝐽 ) ) |
3 |
|
cnmbfm.3 |
⊢ ( 𝜑 → 𝑇 = ( sigaGen ‘ 𝐾 ) ) |
4 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
5 |
|
eqid |
⊢ ∪ 𝐾 = ∪ 𝐾 |
6 |
4 5
|
cnf |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐹 : ∪ 𝐽 ⟶ ∪ 𝐾 ) |
7 |
1 6
|
syl |
⊢ ( 𝜑 → 𝐹 : ∪ 𝐽 ⟶ ∪ 𝐾 ) |
8 |
2
|
unieqd |
⊢ ( 𝜑 → ∪ 𝑆 = ∪ ( sigaGen ‘ 𝐽 ) ) |
9 |
|
cntop1 |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐽 ∈ Top ) |
10 |
|
unisg |
⊢ ( 𝐽 ∈ Top → ∪ ( sigaGen ‘ 𝐽 ) = ∪ 𝐽 ) |
11 |
1 9 10
|
3syl |
⊢ ( 𝜑 → ∪ ( sigaGen ‘ 𝐽 ) = ∪ 𝐽 ) |
12 |
8 11
|
eqtrd |
⊢ ( 𝜑 → ∪ 𝑆 = ∪ 𝐽 ) |
13 |
3
|
unieqd |
⊢ ( 𝜑 → ∪ 𝑇 = ∪ ( sigaGen ‘ 𝐾 ) ) |
14 |
|
cntop2 |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐾 ∈ Top ) |
15 |
|
unisg |
⊢ ( 𝐾 ∈ Top → ∪ ( sigaGen ‘ 𝐾 ) = ∪ 𝐾 ) |
16 |
1 14 15
|
3syl |
⊢ ( 𝜑 → ∪ ( sigaGen ‘ 𝐾 ) = ∪ 𝐾 ) |
17 |
13 16
|
eqtrd |
⊢ ( 𝜑 → ∪ 𝑇 = ∪ 𝐾 ) |
18 |
12 17
|
feq23d |
⊢ ( 𝜑 → ( 𝐹 : ∪ 𝑆 ⟶ ∪ 𝑇 ↔ 𝐹 : ∪ 𝐽 ⟶ ∪ 𝐾 ) ) |
19 |
7 18
|
mpbird |
⊢ ( 𝜑 → 𝐹 : ∪ 𝑆 ⟶ ∪ 𝑇 ) |
20 |
|
sssigagen |
⊢ ( 𝐽 ∈ Top → 𝐽 ⊆ ( sigaGen ‘ 𝐽 ) ) |
21 |
1 9 20
|
3syl |
⊢ ( 𝜑 → 𝐽 ⊆ ( sigaGen ‘ 𝐽 ) ) |
22 |
21 2
|
sseqtrrd |
⊢ ( 𝜑 → 𝐽 ⊆ 𝑆 ) |
23 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) → 𝐽 ⊆ 𝑆 ) |
24 |
|
cnima |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑎 ∈ 𝐾 ) → ( ◡ 𝐹 “ 𝑎 ) ∈ 𝐽 ) |
25 |
1 24
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) → ( ◡ 𝐹 “ 𝑎 ) ∈ 𝐽 ) |
26 |
23 25
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) → ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 ) |
27 |
26
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝐾 ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 ) |
28 |
|
elex |
⊢ ( 𝐾 ∈ Top → 𝐾 ∈ V ) |
29 |
1 14 28
|
3syl |
⊢ ( 𝜑 → 𝐾 ∈ V ) |
30 |
|
sigagensiga |
⊢ ( 𝐽 ∈ Top → ( sigaGen ‘ 𝐽 ) ∈ ( sigAlgebra ‘ ∪ 𝐽 ) ) |
31 |
1 9 30
|
3syl |
⊢ ( 𝜑 → ( sigaGen ‘ 𝐽 ) ∈ ( sigAlgebra ‘ ∪ 𝐽 ) ) |
32 |
2 31
|
eqeltrd |
⊢ ( 𝜑 → 𝑆 ∈ ( sigAlgebra ‘ ∪ 𝐽 ) ) |
33 |
|
elrnsiga |
⊢ ( 𝑆 ∈ ( sigAlgebra ‘ ∪ 𝐽 ) → 𝑆 ∈ ∪ ran sigAlgebra ) |
34 |
32 33
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ ∪ ran sigAlgebra ) |
35 |
29 34 3
|
imambfm |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑆 MblFnM 𝑇 ) ↔ ( 𝐹 : ∪ 𝑆 ⟶ ∪ 𝑇 ∧ ∀ 𝑎 ∈ 𝐾 ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 ) ) ) |
36 |
19 27 35
|
mpbir2and |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑆 MblFnM 𝑇 ) ) |