| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnmbfm.1 |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |
| 2 |
|
cnmbfm.2 |
⊢ ( 𝜑 → 𝑆 = ( sigaGen ‘ 𝐽 ) ) |
| 3 |
|
cnmbfm.3 |
⊢ ( 𝜑 → 𝑇 = ( sigaGen ‘ 𝐾 ) ) |
| 4 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
| 5 |
|
eqid |
⊢ ∪ 𝐾 = ∪ 𝐾 |
| 6 |
4 5
|
cnf |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐹 : ∪ 𝐽 ⟶ ∪ 𝐾 ) |
| 7 |
1 6
|
syl |
⊢ ( 𝜑 → 𝐹 : ∪ 𝐽 ⟶ ∪ 𝐾 ) |
| 8 |
2
|
unieqd |
⊢ ( 𝜑 → ∪ 𝑆 = ∪ ( sigaGen ‘ 𝐽 ) ) |
| 9 |
|
cntop1 |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐽 ∈ Top ) |
| 10 |
|
unisg |
⊢ ( 𝐽 ∈ Top → ∪ ( sigaGen ‘ 𝐽 ) = ∪ 𝐽 ) |
| 11 |
1 9 10
|
3syl |
⊢ ( 𝜑 → ∪ ( sigaGen ‘ 𝐽 ) = ∪ 𝐽 ) |
| 12 |
8 11
|
eqtrd |
⊢ ( 𝜑 → ∪ 𝑆 = ∪ 𝐽 ) |
| 13 |
3
|
unieqd |
⊢ ( 𝜑 → ∪ 𝑇 = ∪ ( sigaGen ‘ 𝐾 ) ) |
| 14 |
|
cntop2 |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐾 ∈ Top ) |
| 15 |
|
unisg |
⊢ ( 𝐾 ∈ Top → ∪ ( sigaGen ‘ 𝐾 ) = ∪ 𝐾 ) |
| 16 |
1 14 15
|
3syl |
⊢ ( 𝜑 → ∪ ( sigaGen ‘ 𝐾 ) = ∪ 𝐾 ) |
| 17 |
13 16
|
eqtrd |
⊢ ( 𝜑 → ∪ 𝑇 = ∪ 𝐾 ) |
| 18 |
12 17
|
feq23d |
⊢ ( 𝜑 → ( 𝐹 : ∪ 𝑆 ⟶ ∪ 𝑇 ↔ 𝐹 : ∪ 𝐽 ⟶ ∪ 𝐾 ) ) |
| 19 |
7 18
|
mpbird |
⊢ ( 𝜑 → 𝐹 : ∪ 𝑆 ⟶ ∪ 𝑇 ) |
| 20 |
|
sssigagen |
⊢ ( 𝐽 ∈ Top → 𝐽 ⊆ ( sigaGen ‘ 𝐽 ) ) |
| 21 |
1 9 20
|
3syl |
⊢ ( 𝜑 → 𝐽 ⊆ ( sigaGen ‘ 𝐽 ) ) |
| 22 |
21 2
|
sseqtrrd |
⊢ ( 𝜑 → 𝐽 ⊆ 𝑆 ) |
| 23 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) → 𝐽 ⊆ 𝑆 ) |
| 24 |
|
cnima |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑎 ∈ 𝐾 ) → ( ◡ 𝐹 “ 𝑎 ) ∈ 𝐽 ) |
| 25 |
1 24
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) → ( ◡ 𝐹 “ 𝑎 ) ∈ 𝐽 ) |
| 26 |
23 25
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) → ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 ) |
| 27 |
26
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝐾 ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 ) |
| 28 |
|
elex |
⊢ ( 𝐾 ∈ Top → 𝐾 ∈ V ) |
| 29 |
1 14 28
|
3syl |
⊢ ( 𝜑 → 𝐾 ∈ V ) |
| 30 |
|
sigagensiga |
⊢ ( 𝐽 ∈ Top → ( sigaGen ‘ 𝐽 ) ∈ ( sigAlgebra ‘ ∪ 𝐽 ) ) |
| 31 |
1 9 30
|
3syl |
⊢ ( 𝜑 → ( sigaGen ‘ 𝐽 ) ∈ ( sigAlgebra ‘ ∪ 𝐽 ) ) |
| 32 |
2 31
|
eqeltrd |
⊢ ( 𝜑 → 𝑆 ∈ ( sigAlgebra ‘ ∪ 𝐽 ) ) |
| 33 |
|
elrnsiga |
⊢ ( 𝑆 ∈ ( sigAlgebra ‘ ∪ 𝐽 ) → 𝑆 ∈ ∪ ran sigAlgebra ) |
| 34 |
32 33
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ ∪ ran sigAlgebra ) |
| 35 |
29 34 3
|
imambfm |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑆 MblFnM 𝑇 ) ↔ ( 𝐹 : ∪ 𝑆 ⟶ ∪ 𝑇 ∧ ∀ 𝑎 ∈ 𝐾 ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑆 ) ) ) |
| 36 |
19 27 35
|
mpbir2and |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑆 MblFnM 𝑇 ) ) |