Metamath Proof Explorer


Theorem cnmbfm

Description: A continuous function is measurable with respect to the Borel Algebra of its domain and range. (Contributed by Thierry Arnoux, 3-Jun-2017)

Ref Expression
Hypotheses cnmbfm.1 φ F J Cn K
cnmbfm.2 φ S = 𝛔 J
cnmbfm.3 φ T = 𝛔 K
Assertion cnmbfm φ F S MblFn μ T

Proof

Step Hyp Ref Expression
1 cnmbfm.1 φ F J Cn K
2 cnmbfm.2 φ S = 𝛔 J
3 cnmbfm.3 φ T = 𝛔 K
4 eqid J = J
5 eqid K = K
6 4 5 cnf F J Cn K F : J K
7 1 6 syl φ F : J K
8 2 unieqd φ S = 𝛔 J
9 cntop1 F J Cn K J Top
10 unisg J Top 𝛔 J = J
11 1 9 10 3syl φ 𝛔 J = J
12 8 11 eqtrd φ S = J
13 3 unieqd φ T = 𝛔 K
14 cntop2 F J Cn K K Top
15 unisg K Top 𝛔 K = K
16 1 14 15 3syl φ 𝛔 K = K
17 13 16 eqtrd φ T = K
18 12 17 feq23d φ F : S T F : J K
19 7 18 mpbird φ F : S T
20 sssigagen J Top J 𝛔 J
21 1 9 20 3syl φ J 𝛔 J
22 21 2 sseqtrrd φ J S
23 22 adantr φ a K J S
24 cnima F J Cn K a K F -1 a J
25 1 24 sylan φ a K F -1 a J
26 23 25 sseldd φ a K F -1 a S
27 26 ralrimiva φ a K F -1 a S
28 elex K Top K V
29 1 14 28 3syl φ K V
30 sigagensiga J Top 𝛔 J sigAlgebra J
31 1 9 30 3syl φ 𝛔 J sigAlgebra J
32 2 31 eqeltrd φ S sigAlgebra J
33 elrnsiga S sigAlgebra J S ran sigAlgebra
34 32 33 syl φ S ran sigAlgebra
35 29 34 3 imambfm φ F S MblFn μ T F : S T a K F -1 a S
36 19 27 35 mpbir2and φ F S MblFn μ T