Metamath Proof Explorer


Theorem mbfmco

Description: The composition of two measurable functions is measurable. See cnmpt11 . (Contributed by Thierry Arnoux, 4-Jun-2017)

Ref Expression
Hypotheses mbfmco.1 ( 𝜑𝑅 ran sigAlgebra )
mbfmco.2 ( 𝜑𝑆 ran sigAlgebra )
mbfmco.3 ( 𝜑𝑇 ran sigAlgebra )
mbfmco.4 ( 𝜑𝐹 ∈ ( 𝑅 MblFnM 𝑆 ) )
mbfmco.5 ( 𝜑𝐺 ∈ ( 𝑆 MblFnM 𝑇 ) )
Assertion mbfmco ( 𝜑 → ( 𝐺𝐹 ) ∈ ( 𝑅 MblFnM 𝑇 ) )

Proof

Step Hyp Ref Expression
1 mbfmco.1 ( 𝜑𝑅 ran sigAlgebra )
2 mbfmco.2 ( 𝜑𝑆 ran sigAlgebra )
3 mbfmco.3 ( 𝜑𝑇 ran sigAlgebra )
4 mbfmco.4 ( 𝜑𝐹 ∈ ( 𝑅 MblFnM 𝑆 ) )
5 mbfmco.5 ( 𝜑𝐺 ∈ ( 𝑆 MblFnM 𝑇 ) )
6 2 3 5 mbfmf ( 𝜑𝐺 : 𝑆 𝑇 )
7 1 2 4 mbfmf ( 𝜑𝐹 : 𝑅 𝑆 )
8 fco ( ( 𝐺 : 𝑆 𝑇𝐹 : 𝑅 𝑆 ) → ( 𝐺𝐹 ) : 𝑅 𝑇 )
9 6 7 8 syl2anc ( 𝜑 → ( 𝐺𝐹 ) : 𝑅 𝑇 )
10 unielsiga ( 𝑇 ran sigAlgebra → 𝑇𝑇 )
11 3 10 syl ( 𝜑 𝑇𝑇 )
12 unielsiga ( 𝑅 ran sigAlgebra → 𝑅𝑅 )
13 1 12 syl ( 𝜑 𝑅𝑅 )
14 11 13 elmapd ( 𝜑 → ( ( 𝐺𝐹 ) ∈ ( 𝑇m 𝑅 ) ↔ ( 𝐺𝐹 ) : 𝑅 𝑇 ) )
15 9 14 mpbird ( 𝜑 → ( 𝐺𝐹 ) ∈ ( 𝑇m 𝑅 ) )
16 cnvco ( 𝐺𝐹 ) = ( 𝐹 𝐺 )
17 16 imaeq1i ( ( 𝐺𝐹 ) “ 𝑎 ) = ( ( 𝐹 𝐺 ) “ 𝑎 )
18 imaco ( ( 𝐹 𝐺 ) “ 𝑎 ) = ( 𝐹 “ ( 𝐺𝑎 ) )
19 17 18 eqtri ( ( 𝐺𝐹 ) “ 𝑎 ) = ( 𝐹 “ ( 𝐺𝑎 ) )
20 1 adantr ( ( 𝜑𝑎𝑇 ) → 𝑅 ran sigAlgebra )
21 2 adantr ( ( 𝜑𝑎𝑇 ) → 𝑆 ran sigAlgebra )
22 4 adantr ( ( 𝜑𝑎𝑇 ) → 𝐹 ∈ ( 𝑅 MblFnM 𝑆 ) )
23 3 adantr ( ( 𝜑𝑎𝑇 ) → 𝑇 ran sigAlgebra )
24 5 adantr ( ( 𝜑𝑎𝑇 ) → 𝐺 ∈ ( 𝑆 MblFnM 𝑇 ) )
25 simpr ( ( 𝜑𝑎𝑇 ) → 𝑎𝑇 )
26 21 23 24 25 mbfmcnvima ( ( 𝜑𝑎𝑇 ) → ( 𝐺𝑎 ) ∈ 𝑆 )
27 20 21 22 26 mbfmcnvima ( ( 𝜑𝑎𝑇 ) → ( 𝐹 “ ( 𝐺𝑎 ) ) ∈ 𝑅 )
28 19 27 eqeltrid ( ( 𝜑𝑎𝑇 ) → ( ( 𝐺𝐹 ) “ 𝑎 ) ∈ 𝑅 )
29 28 ralrimiva ( 𝜑 → ∀ 𝑎𝑇 ( ( 𝐺𝐹 ) “ 𝑎 ) ∈ 𝑅 )
30 1 3 ismbfm ( 𝜑 → ( ( 𝐺𝐹 ) ∈ ( 𝑅 MblFnM 𝑇 ) ↔ ( ( 𝐺𝐹 ) ∈ ( 𝑇m 𝑅 ) ∧ ∀ 𝑎𝑇 ( ( 𝐺𝐹 ) “ 𝑎 ) ∈ 𝑅 ) ) )
31 15 29 30 mpbir2and ( 𝜑 → ( 𝐺𝐹 ) ∈ ( 𝑅 MblFnM 𝑇 ) )