| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mbfmco.1 |
⊢ ( 𝜑 → 𝑅 ∈ ∪ ran sigAlgebra ) |
| 2 |
|
mbfmco.2 |
⊢ ( 𝜑 → 𝑆 ∈ ∪ ran sigAlgebra ) |
| 3 |
|
mbfmco.3 |
⊢ ( 𝜑 → 𝑇 ∈ ∪ ran sigAlgebra ) |
| 4 |
|
mbfmco.4 |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑅 MblFnM 𝑆 ) ) |
| 5 |
|
mbfmco.5 |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝑆 MblFnM 𝑇 ) ) |
| 6 |
2 3 5
|
mbfmf |
⊢ ( 𝜑 → 𝐺 : ∪ 𝑆 ⟶ ∪ 𝑇 ) |
| 7 |
1 2 4
|
mbfmf |
⊢ ( 𝜑 → 𝐹 : ∪ 𝑅 ⟶ ∪ 𝑆 ) |
| 8 |
|
fco |
⊢ ( ( 𝐺 : ∪ 𝑆 ⟶ ∪ 𝑇 ∧ 𝐹 : ∪ 𝑅 ⟶ ∪ 𝑆 ) → ( 𝐺 ∘ 𝐹 ) : ∪ 𝑅 ⟶ ∪ 𝑇 ) |
| 9 |
6 7 8
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 ∘ 𝐹 ) : ∪ 𝑅 ⟶ ∪ 𝑇 ) |
| 10 |
|
unielsiga |
⊢ ( 𝑇 ∈ ∪ ran sigAlgebra → ∪ 𝑇 ∈ 𝑇 ) |
| 11 |
3 10
|
syl |
⊢ ( 𝜑 → ∪ 𝑇 ∈ 𝑇 ) |
| 12 |
|
unielsiga |
⊢ ( 𝑅 ∈ ∪ ran sigAlgebra → ∪ 𝑅 ∈ 𝑅 ) |
| 13 |
1 12
|
syl |
⊢ ( 𝜑 → ∪ 𝑅 ∈ 𝑅 ) |
| 14 |
11 13
|
elmapd |
⊢ ( 𝜑 → ( ( 𝐺 ∘ 𝐹 ) ∈ ( ∪ 𝑇 ↑m ∪ 𝑅 ) ↔ ( 𝐺 ∘ 𝐹 ) : ∪ 𝑅 ⟶ ∪ 𝑇 ) ) |
| 15 |
9 14
|
mpbird |
⊢ ( 𝜑 → ( 𝐺 ∘ 𝐹 ) ∈ ( ∪ 𝑇 ↑m ∪ 𝑅 ) ) |
| 16 |
|
cnvco |
⊢ ◡ ( 𝐺 ∘ 𝐹 ) = ( ◡ 𝐹 ∘ ◡ 𝐺 ) |
| 17 |
16
|
imaeq1i |
⊢ ( ◡ ( 𝐺 ∘ 𝐹 ) “ 𝑎 ) = ( ( ◡ 𝐹 ∘ ◡ 𝐺 ) “ 𝑎 ) |
| 18 |
|
imaco |
⊢ ( ( ◡ 𝐹 ∘ ◡ 𝐺 ) “ 𝑎 ) = ( ◡ 𝐹 “ ( ◡ 𝐺 “ 𝑎 ) ) |
| 19 |
17 18
|
eqtri |
⊢ ( ◡ ( 𝐺 ∘ 𝐹 ) “ 𝑎 ) = ( ◡ 𝐹 “ ( ◡ 𝐺 “ 𝑎 ) ) |
| 20 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑇 ) → 𝑅 ∈ ∪ ran sigAlgebra ) |
| 21 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑇 ) → 𝑆 ∈ ∪ ran sigAlgebra ) |
| 22 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑇 ) → 𝐹 ∈ ( 𝑅 MblFnM 𝑆 ) ) |
| 23 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑇 ) → 𝑇 ∈ ∪ ran sigAlgebra ) |
| 24 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑇 ) → 𝐺 ∈ ( 𝑆 MblFnM 𝑇 ) ) |
| 25 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑇 ) → 𝑎 ∈ 𝑇 ) |
| 26 |
21 23 24 25
|
mbfmcnvima |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑇 ) → ( ◡ 𝐺 “ 𝑎 ) ∈ 𝑆 ) |
| 27 |
20 21 22 26
|
mbfmcnvima |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑇 ) → ( ◡ 𝐹 “ ( ◡ 𝐺 “ 𝑎 ) ) ∈ 𝑅 ) |
| 28 |
19 27
|
eqeltrid |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑇 ) → ( ◡ ( 𝐺 ∘ 𝐹 ) “ 𝑎 ) ∈ 𝑅 ) |
| 29 |
28
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝑇 ( ◡ ( 𝐺 ∘ 𝐹 ) “ 𝑎 ) ∈ 𝑅 ) |
| 30 |
1 3
|
ismbfm |
⊢ ( 𝜑 → ( ( 𝐺 ∘ 𝐹 ) ∈ ( 𝑅 MblFnM 𝑇 ) ↔ ( ( 𝐺 ∘ 𝐹 ) ∈ ( ∪ 𝑇 ↑m ∪ 𝑅 ) ∧ ∀ 𝑎 ∈ 𝑇 ( ◡ ( 𝐺 ∘ 𝐹 ) “ 𝑎 ) ∈ 𝑅 ) ) ) |
| 31 |
15 29 30
|
mpbir2and |
⊢ ( 𝜑 → ( 𝐺 ∘ 𝐹 ) ∈ ( 𝑅 MblFnM 𝑇 ) ) |