Metamath Proof Explorer


Theorem mbfmco2

Description: The pair building of two measurable functions is measurable. ( cf. cnmpt1t ). (Contributed by Thierry Arnoux, 6-Jun-2017)

Ref Expression
Hypotheses mbfmco.1 ( 𝜑𝑅 ran sigAlgebra )
mbfmco.2 ( 𝜑𝑆 ran sigAlgebra )
mbfmco.3 ( 𝜑𝑇 ran sigAlgebra )
mbfmco2.4 ( 𝜑𝐹 ∈ ( 𝑅 MblFnM 𝑆 ) )
mbfmco2.5 ( 𝜑𝐺 ∈ ( 𝑅 MblFnM 𝑇 ) )
mbfmco2.6 𝐻 = ( 𝑥 𝑅 ↦ ⟨ ( 𝐹𝑥 ) , ( 𝐺𝑥 ) ⟩ )
Assertion mbfmco2 ( 𝜑𝐻 ∈ ( 𝑅 MblFnM ( 𝑆 ×s 𝑇 ) ) )

Proof

Step Hyp Ref Expression
1 mbfmco.1 ( 𝜑𝑅 ran sigAlgebra )
2 mbfmco.2 ( 𝜑𝑆 ran sigAlgebra )
3 mbfmco.3 ( 𝜑𝑇 ran sigAlgebra )
4 mbfmco2.4 ( 𝜑𝐹 ∈ ( 𝑅 MblFnM 𝑆 ) )
5 mbfmco2.5 ( 𝜑𝐺 ∈ ( 𝑅 MblFnM 𝑇 ) )
6 mbfmco2.6 𝐻 = ( 𝑥 𝑅 ↦ ⟨ ( 𝐹𝑥 ) , ( 𝐺𝑥 ) ⟩ )
7 1 2 4 mbfmf ( 𝜑𝐹 : 𝑅 𝑆 )
8 7 ffvelrnda ( ( 𝜑𝑥 𝑅 ) → ( 𝐹𝑥 ) ∈ 𝑆 )
9 1 3 5 mbfmf ( 𝜑𝐺 : 𝑅 𝑇 )
10 9 ffvelrnda ( ( 𝜑𝑥 𝑅 ) → ( 𝐺𝑥 ) ∈ 𝑇 )
11 opelxpi ( ( ( 𝐹𝑥 ) ∈ 𝑆 ∧ ( 𝐺𝑥 ) ∈ 𝑇 ) → ⟨ ( 𝐹𝑥 ) , ( 𝐺𝑥 ) ⟩ ∈ ( 𝑆 × 𝑇 ) )
12 8 10 11 syl2anc ( ( 𝜑𝑥 𝑅 ) → ⟨ ( 𝐹𝑥 ) , ( 𝐺𝑥 ) ⟩ ∈ ( 𝑆 × 𝑇 ) )
13 sxuni ( ( 𝑆 ran sigAlgebra ∧ 𝑇 ran sigAlgebra ) → ( 𝑆 × 𝑇 ) = ( 𝑆 ×s 𝑇 ) )
14 2 3 13 syl2anc ( 𝜑 → ( 𝑆 × 𝑇 ) = ( 𝑆 ×s 𝑇 ) )
15 14 adantr ( ( 𝜑𝑥 𝑅 ) → ( 𝑆 × 𝑇 ) = ( 𝑆 ×s 𝑇 ) )
16 12 15 eleqtrd ( ( 𝜑𝑥 𝑅 ) → ⟨ ( 𝐹𝑥 ) , ( 𝐺𝑥 ) ⟩ ∈ ( 𝑆 ×s 𝑇 ) )
17 16 6 fmptd ( 𝜑𝐻 : 𝑅 ( 𝑆 ×s 𝑇 ) )
18 eqid ( 𝑎𝑆 , 𝑏𝑇 ↦ ( 𝑎 × 𝑏 ) ) = ( 𝑎𝑆 , 𝑏𝑇 ↦ ( 𝑎 × 𝑏 ) )
19 vex 𝑎 ∈ V
20 vex 𝑏 ∈ V
21 19 20 xpex ( 𝑎 × 𝑏 ) ∈ V
22 18 21 elrnmpo ( 𝑐 ∈ ran ( 𝑎𝑆 , 𝑏𝑇 ↦ ( 𝑎 × 𝑏 ) ) ↔ ∃ 𝑎𝑆𝑏𝑇 𝑐 = ( 𝑎 × 𝑏 ) )
23 simp3 ( ( 𝜑 ∧ ( 𝑎𝑆𝑏𝑇 ) ∧ 𝑐 = ( 𝑎 × 𝑏 ) ) → 𝑐 = ( 𝑎 × 𝑏 ) )
24 23 imaeq2d ( ( 𝜑 ∧ ( 𝑎𝑆𝑏𝑇 ) ∧ 𝑐 = ( 𝑎 × 𝑏 ) ) → ( 𝐻𝑐 ) = ( 𝐻 “ ( 𝑎 × 𝑏 ) ) )
25 simp1 ( ( 𝜑 ∧ ( 𝑎𝑆𝑏𝑇 ) ∧ 𝑐 = ( 𝑎 × 𝑏 ) ) → 𝜑 )
26 simp2l ( ( 𝜑 ∧ ( 𝑎𝑆𝑏𝑇 ) ∧ 𝑐 = ( 𝑎 × 𝑏 ) ) → 𝑎𝑆 )
27 simp2r ( ( 𝜑 ∧ ( 𝑎𝑆𝑏𝑇 ) ∧ 𝑐 = ( 𝑎 × 𝑏 ) ) → 𝑏𝑇 )
28 7 9 6 xppreima2 ( 𝜑 → ( 𝐻 “ ( 𝑎 × 𝑏 ) ) = ( ( 𝐹𝑎 ) ∩ ( 𝐺𝑏 ) ) )
29 28 3ad2ant1 ( ( 𝜑𝑎𝑆𝑏𝑇 ) → ( 𝐻 “ ( 𝑎 × 𝑏 ) ) = ( ( 𝐹𝑎 ) ∩ ( 𝐺𝑏 ) ) )
30 1 3ad2ant1 ( ( 𝜑𝑎𝑆𝑏𝑇 ) → 𝑅 ran sigAlgebra )
31 2 3ad2ant1 ( ( 𝜑𝑎𝑆𝑏𝑇 ) → 𝑆 ran sigAlgebra )
32 4 3ad2ant1 ( ( 𝜑𝑎𝑆𝑏𝑇 ) → 𝐹 ∈ ( 𝑅 MblFnM 𝑆 ) )
33 simp2 ( ( 𝜑𝑎𝑆𝑏𝑇 ) → 𝑎𝑆 )
34 30 31 32 33 mbfmcnvima ( ( 𝜑𝑎𝑆𝑏𝑇 ) → ( 𝐹𝑎 ) ∈ 𝑅 )
35 3 3ad2ant1 ( ( 𝜑𝑎𝑆𝑏𝑇 ) → 𝑇 ran sigAlgebra )
36 5 3ad2ant1 ( ( 𝜑𝑎𝑆𝑏𝑇 ) → 𝐺 ∈ ( 𝑅 MblFnM 𝑇 ) )
37 simp3 ( ( 𝜑𝑎𝑆𝑏𝑇 ) → 𝑏𝑇 )
38 30 35 36 37 mbfmcnvima ( ( 𝜑𝑎𝑆𝑏𝑇 ) → ( 𝐺𝑏 ) ∈ 𝑅 )
39 inelsiga ( ( 𝑅 ran sigAlgebra ∧ ( 𝐹𝑎 ) ∈ 𝑅 ∧ ( 𝐺𝑏 ) ∈ 𝑅 ) → ( ( 𝐹𝑎 ) ∩ ( 𝐺𝑏 ) ) ∈ 𝑅 )
40 30 34 38 39 syl3anc ( ( 𝜑𝑎𝑆𝑏𝑇 ) → ( ( 𝐹𝑎 ) ∩ ( 𝐺𝑏 ) ) ∈ 𝑅 )
41 29 40 eqeltrd ( ( 𝜑𝑎𝑆𝑏𝑇 ) → ( 𝐻 “ ( 𝑎 × 𝑏 ) ) ∈ 𝑅 )
42 25 26 27 41 syl3anc ( ( 𝜑 ∧ ( 𝑎𝑆𝑏𝑇 ) ∧ 𝑐 = ( 𝑎 × 𝑏 ) ) → ( 𝐻 “ ( 𝑎 × 𝑏 ) ) ∈ 𝑅 )
43 24 42 eqeltrd ( ( 𝜑 ∧ ( 𝑎𝑆𝑏𝑇 ) ∧ 𝑐 = ( 𝑎 × 𝑏 ) ) → ( 𝐻𝑐 ) ∈ 𝑅 )
44 43 3expia ( ( 𝜑 ∧ ( 𝑎𝑆𝑏𝑇 ) ) → ( 𝑐 = ( 𝑎 × 𝑏 ) → ( 𝐻𝑐 ) ∈ 𝑅 ) )
45 44 rexlimdvva ( 𝜑 → ( ∃ 𝑎𝑆𝑏𝑇 𝑐 = ( 𝑎 × 𝑏 ) → ( 𝐻𝑐 ) ∈ 𝑅 ) )
46 45 imp ( ( 𝜑 ∧ ∃ 𝑎𝑆𝑏𝑇 𝑐 = ( 𝑎 × 𝑏 ) ) → ( 𝐻𝑐 ) ∈ 𝑅 )
47 22 46 sylan2b ( ( 𝜑𝑐 ∈ ran ( 𝑎𝑆 , 𝑏𝑇 ↦ ( 𝑎 × 𝑏 ) ) ) → ( 𝐻𝑐 ) ∈ 𝑅 )
48 47 ralrimiva ( 𝜑 → ∀ 𝑐 ∈ ran ( 𝑎𝑆 , 𝑏𝑇 ↦ ( 𝑎 × 𝑏 ) ) ( 𝐻𝑐 ) ∈ 𝑅 )
49 eqid ran ( 𝑎𝑆 , 𝑏𝑇 ↦ ( 𝑎 × 𝑏 ) ) = ran ( 𝑎𝑆 , 𝑏𝑇 ↦ ( 𝑎 × 𝑏 ) )
50 49 txbasex ( ( 𝑆 ran sigAlgebra ∧ 𝑇 ran sigAlgebra ) → ran ( 𝑎𝑆 , 𝑏𝑇 ↦ ( 𝑎 × 𝑏 ) ) ∈ V )
51 2 3 50 syl2anc ( 𝜑 → ran ( 𝑎𝑆 , 𝑏𝑇 ↦ ( 𝑎 × 𝑏 ) ) ∈ V )
52 49 sxval ( ( 𝑆 ran sigAlgebra ∧ 𝑇 ran sigAlgebra ) → ( 𝑆 ×s 𝑇 ) = ( sigaGen ‘ ran ( 𝑎𝑆 , 𝑏𝑇 ↦ ( 𝑎 × 𝑏 ) ) ) )
53 2 3 52 syl2anc ( 𝜑 → ( 𝑆 ×s 𝑇 ) = ( sigaGen ‘ ran ( 𝑎𝑆 , 𝑏𝑇 ↦ ( 𝑎 × 𝑏 ) ) ) )
54 51 1 53 imambfm ( 𝜑 → ( 𝐻 ∈ ( 𝑅 MblFnM ( 𝑆 ×s 𝑇 ) ) ↔ ( 𝐻 : 𝑅 ( 𝑆 ×s 𝑇 ) ∧ ∀ 𝑐 ∈ ran ( 𝑎𝑆 , 𝑏𝑇 ↦ ( 𝑎 × 𝑏 ) ) ( 𝐻𝑐 ) ∈ 𝑅 ) ) )
55 17 48 54 mpbir2and ( 𝜑𝐻 ∈ ( 𝑅 MblFnM ( 𝑆 ×s 𝑇 ) ) )