| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mbfmco.1 |
⊢ ( 𝜑 → 𝑅 ∈ ∪ ran sigAlgebra ) |
| 2 |
|
mbfmco.2 |
⊢ ( 𝜑 → 𝑆 ∈ ∪ ran sigAlgebra ) |
| 3 |
|
mbfmco.3 |
⊢ ( 𝜑 → 𝑇 ∈ ∪ ran sigAlgebra ) |
| 4 |
|
mbfmco2.4 |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑅 MblFnM 𝑆 ) ) |
| 5 |
|
mbfmco2.5 |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝑅 MblFnM 𝑇 ) ) |
| 6 |
|
mbfmco2.6 |
⊢ 𝐻 = ( 𝑥 ∈ ∪ 𝑅 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) |
| 7 |
1 2 4
|
mbfmf |
⊢ ( 𝜑 → 𝐹 : ∪ 𝑅 ⟶ ∪ 𝑆 ) |
| 8 |
7
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝑅 ) → ( 𝐹 ‘ 𝑥 ) ∈ ∪ 𝑆 ) |
| 9 |
1 3 5
|
mbfmf |
⊢ ( 𝜑 → 𝐺 : ∪ 𝑅 ⟶ ∪ 𝑇 ) |
| 10 |
9
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝑅 ) → ( 𝐺 ‘ 𝑥 ) ∈ ∪ 𝑇 ) |
| 11 |
|
opelxpi |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) ∈ ∪ 𝑆 ∧ ( 𝐺 ‘ 𝑥 ) ∈ ∪ 𝑇 ) → 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ∈ ( ∪ 𝑆 × ∪ 𝑇 ) ) |
| 12 |
8 10 11
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝑅 ) → 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ∈ ( ∪ 𝑆 × ∪ 𝑇 ) ) |
| 13 |
|
sxuni |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝑇 ∈ ∪ ran sigAlgebra ) → ( ∪ 𝑆 × ∪ 𝑇 ) = ∪ ( 𝑆 ×s 𝑇 ) ) |
| 14 |
2 3 13
|
syl2anc |
⊢ ( 𝜑 → ( ∪ 𝑆 × ∪ 𝑇 ) = ∪ ( 𝑆 ×s 𝑇 ) ) |
| 15 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝑅 ) → ( ∪ 𝑆 × ∪ 𝑇 ) = ∪ ( 𝑆 ×s 𝑇 ) ) |
| 16 |
12 15
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝑅 ) → 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ∈ ∪ ( 𝑆 ×s 𝑇 ) ) |
| 17 |
16 6
|
fmptd |
⊢ ( 𝜑 → 𝐻 : ∪ 𝑅 ⟶ ∪ ( 𝑆 ×s 𝑇 ) ) |
| 18 |
|
eqid |
⊢ ( 𝑎 ∈ 𝑆 , 𝑏 ∈ 𝑇 ↦ ( 𝑎 × 𝑏 ) ) = ( 𝑎 ∈ 𝑆 , 𝑏 ∈ 𝑇 ↦ ( 𝑎 × 𝑏 ) ) |
| 19 |
|
vex |
⊢ 𝑎 ∈ V |
| 20 |
|
vex |
⊢ 𝑏 ∈ V |
| 21 |
19 20
|
xpex |
⊢ ( 𝑎 × 𝑏 ) ∈ V |
| 22 |
18 21
|
elrnmpo |
⊢ ( 𝑐 ∈ ran ( 𝑎 ∈ 𝑆 , 𝑏 ∈ 𝑇 ↦ ( 𝑎 × 𝑏 ) ) ↔ ∃ 𝑎 ∈ 𝑆 ∃ 𝑏 ∈ 𝑇 𝑐 = ( 𝑎 × 𝑏 ) ) |
| 23 |
|
simp3 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑇 ) ∧ 𝑐 = ( 𝑎 × 𝑏 ) ) → 𝑐 = ( 𝑎 × 𝑏 ) ) |
| 24 |
23
|
imaeq2d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑇 ) ∧ 𝑐 = ( 𝑎 × 𝑏 ) ) → ( ◡ 𝐻 “ 𝑐 ) = ( ◡ 𝐻 “ ( 𝑎 × 𝑏 ) ) ) |
| 25 |
|
simp1 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑇 ) ∧ 𝑐 = ( 𝑎 × 𝑏 ) ) → 𝜑 ) |
| 26 |
|
simp2l |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑇 ) ∧ 𝑐 = ( 𝑎 × 𝑏 ) ) → 𝑎 ∈ 𝑆 ) |
| 27 |
|
simp2r |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑇 ) ∧ 𝑐 = ( 𝑎 × 𝑏 ) ) → 𝑏 ∈ 𝑇 ) |
| 28 |
7 9 6
|
xppreima2 |
⊢ ( 𝜑 → ( ◡ 𝐻 “ ( 𝑎 × 𝑏 ) ) = ( ( ◡ 𝐹 “ 𝑎 ) ∩ ( ◡ 𝐺 “ 𝑏 ) ) ) |
| 29 |
28
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑇 ) → ( ◡ 𝐻 “ ( 𝑎 × 𝑏 ) ) = ( ( ◡ 𝐹 “ 𝑎 ) ∩ ( ◡ 𝐺 “ 𝑏 ) ) ) |
| 30 |
1
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑇 ) → 𝑅 ∈ ∪ ran sigAlgebra ) |
| 31 |
2
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑇 ) → 𝑆 ∈ ∪ ran sigAlgebra ) |
| 32 |
4
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑇 ) → 𝐹 ∈ ( 𝑅 MblFnM 𝑆 ) ) |
| 33 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑇 ) → 𝑎 ∈ 𝑆 ) |
| 34 |
30 31 32 33
|
mbfmcnvima |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑇 ) → ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑅 ) |
| 35 |
3
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑇 ) → 𝑇 ∈ ∪ ran sigAlgebra ) |
| 36 |
5
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑇 ) → 𝐺 ∈ ( 𝑅 MblFnM 𝑇 ) ) |
| 37 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑇 ) → 𝑏 ∈ 𝑇 ) |
| 38 |
30 35 36 37
|
mbfmcnvima |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑇 ) → ( ◡ 𝐺 “ 𝑏 ) ∈ 𝑅 ) |
| 39 |
|
inelsiga |
⊢ ( ( 𝑅 ∈ ∪ ran sigAlgebra ∧ ( ◡ 𝐹 “ 𝑎 ) ∈ 𝑅 ∧ ( ◡ 𝐺 “ 𝑏 ) ∈ 𝑅 ) → ( ( ◡ 𝐹 “ 𝑎 ) ∩ ( ◡ 𝐺 “ 𝑏 ) ) ∈ 𝑅 ) |
| 40 |
30 34 38 39
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑇 ) → ( ( ◡ 𝐹 “ 𝑎 ) ∩ ( ◡ 𝐺 “ 𝑏 ) ) ∈ 𝑅 ) |
| 41 |
29 40
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑇 ) → ( ◡ 𝐻 “ ( 𝑎 × 𝑏 ) ) ∈ 𝑅 ) |
| 42 |
25 26 27 41
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑇 ) ∧ 𝑐 = ( 𝑎 × 𝑏 ) ) → ( ◡ 𝐻 “ ( 𝑎 × 𝑏 ) ) ∈ 𝑅 ) |
| 43 |
24 42
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑇 ) ∧ 𝑐 = ( 𝑎 × 𝑏 ) ) → ( ◡ 𝐻 “ 𝑐 ) ∈ 𝑅 ) |
| 44 |
43
|
3expia |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑇 ) ) → ( 𝑐 = ( 𝑎 × 𝑏 ) → ( ◡ 𝐻 “ 𝑐 ) ∈ 𝑅 ) ) |
| 45 |
44
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑎 ∈ 𝑆 ∃ 𝑏 ∈ 𝑇 𝑐 = ( 𝑎 × 𝑏 ) → ( ◡ 𝐻 “ 𝑐 ) ∈ 𝑅 ) ) |
| 46 |
45
|
imp |
⊢ ( ( 𝜑 ∧ ∃ 𝑎 ∈ 𝑆 ∃ 𝑏 ∈ 𝑇 𝑐 = ( 𝑎 × 𝑏 ) ) → ( ◡ 𝐻 “ 𝑐 ) ∈ 𝑅 ) |
| 47 |
22 46
|
sylan2b |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ran ( 𝑎 ∈ 𝑆 , 𝑏 ∈ 𝑇 ↦ ( 𝑎 × 𝑏 ) ) ) → ( ◡ 𝐻 “ 𝑐 ) ∈ 𝑅 ) |
| 48 |
47
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑐 ∈ ran ( 𝑎 ∈ 𝑆 , 𝑏 ∈ 𝑇 ↦ ( 𝑎 × 𝑏 ) ) ( ◡ 𝐻 “ 𝑐 ) ∈ 𝑅 ) |
| 49 |
|
eqid |
⊢ ran ( 𝑎 ∈ 𝑆 , 𝑏 ∈ 𝑇 ↦ ( 𝑎 × 𝑏 ) ) = ran ( 𝑎 ∈ 𝑆 , 𝑏 ∈ 𝑇 ↦ ( 𝑎 × 𝑏 ) ) |
| 50 |
49
|
txbasex |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝑇 ∈ ∪ ran sigAlgebra ) → ran ( 𝑎 ∈ 𝑆 , 𝑏 ∈ 𝑇 ↦ ( 𝑎 × 𝑏 ) ) ∈ V ) |
| 51 |
2 3 50
|
syl2anc |
⊢ ( 𝜑 → ran ( 𝑎 ∈ 𝑆 , 𝑏 ∈ 𝑇 ↦ ( 𝑎 × 𝑏 ) ) ∈ V ) |
| 52 |
49
|
sxval |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝑇 ∈ ∪ ran sigAlgebra ) → ( 𝑆 ×s 𝑇 ) = ( sigaGen ‘ ran ( 𝑎 ∈ 𝑆 , 𝑏 ∈ 𝑇 ↦ ( 𝑎 × 𝑏 ) ) ) ) |
| 53 |
2 3 52
|
syl2anc |
⊢ ( 𝜑 → ( 𝑆 ×s 𝑇 ) = ( sigaGen ‘ ran ( 𝑎 ∈ 𝑆 , 𝑏 ∈ 𝑇 ↦ ( 𝑎 × 𝑏 ) ) ) ) |
| 54 |
51 1 53
|
imambfm |
⊢ ( 𝜑 → ( 𝐻 ∈ ( 𝑅 MblFnM ( 𝑆 ×s 𝑇 ) ) ↔ ( 𝐻 : ∪ 𝑅 ⟶ ∪ ( 𝑆 ×s 𝑇 ) ∧ ∀ 𝑐 ∈ ran ( 𝑎 ∈ 𝑆 , 𝑏 ∈ 𝑇 ↦ ( 𝑎 × 𝑏 ) ) ( ◡ 𝐻 “ 𝑐 ) ∈ 𝑅 ) ) ) |
| 55 |
17 48 54
|
mpbir2and |
⊢ ( 𝜑 → 𝐻 ∈ ( 𝑅 MblFnM ( 𝑆 ×s 𝑇 ) ) ) |