| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mbfmco.1 |
|- ( ph -> R e. U. ran sigAlgebra ) |
| 2 |
|
mbfmco.2 |
|- ( ph -> S e. U. ran sigAlgebra ) |
| 3 |
|
mbfmco.3 |
|- ( ph -> T e. U. ran sigAlgebra ) |
| 4 |
|
mbfmco2.4 |
|- ( ph -> F e. ( R MblFnM S ) ) |
| 5 |
|
mbfmco2.5 |
|- ( ph -> G e. ( R MblFnM T ) ) |
| 6 |
|
mbfmco2.6 |
|- H = ( x e. U. R |-> <. ( F ` x ) , ( G ` x ) >. ) |
| 7 |
1 2 4
|
mbfmf |
|- ( ph -> F : U. R --> U. S ) |
| 8 |
7
|
ffvelcdmda |
|- ( ( ph /\ x e. U. R ) -> ( F ` x ) e. U. S ) |
| 9 |
1 3 5
|
mbfmf |
|- ( ph -> G : U. R --> U. T ) |
| 10 |
9
|
ffvelcdmda |
|- ( ( ph /\ x e. U. R ) -> ( G ` x ) e. U. T ) |
| 11 |
|
opelxpi |
|- ( ( ( F ` x ) e. U. S /\ ( G ` x ) e. U. T ) -> <. ( F ` x ) , ( G ` x ) >. e. ( U. S X. U. T ) ) |
| 12 |
8 10 11
|
syl2anc |
|- ( ( ph /\ x e. U. R ) -> <. ( F ` x ) , ( G ` x ) >. e. ( U. S X. U. T ) ) |
| 13 |
|
sxuni |
|- ( ( S e. U. ran sigAlgebra /\ T e. U. ran sigAlgebra ) -> ( U. S X. U. T ) = U. ( S sX T ) ) |
| 14 |
2 3 13
|
syl2anc |
|- ( ph -> ( U. S X. U. T ) = U. ( S sX T ) ) |
| 15 |
14
|
adantr |
|- ( ( ph /\ x e. U. R ) -> ( U. S X. U. T ) = U. ( S sX T ) ) |
| 16 |
12 15
|
eleqtrd |
|- ( ( ph /\ x e. U. R ) -> <. ( F ` x ) , ( G ` x ) >. e. U. ( S sX T ) ) |
| 17 |
16 6
|
fmptd |
|- ( ph -> H : U. R --> U. ( S sX T ) ) |
| 18 |
|
eqid |
|- ( a e. S , b e. T |-> ( a X. b ) ) = ( a e. S , b e. T |-> ( a X. b ) ) |
| 19 |
|
vex |
|- a e. _V |
| 20 |
|
vex |
|- b e. _V |
| 21 |
19 20
|
xpex |
|- ( a X. b ) e. _V |
| 22 |
18 21
|
elrnmpo |
|- ( c e. ran ( a e. S , b e. T |-> ( a X. b ) ) <-> E. a e. S E. b e. T c = ( a X. b ) ) |
| 23 |
|
simp3 |
|- ( ( ph /\ ( a e. S /\ b e. T ) /\ c = ( a X. b ) ) -> c = ( a X. b ) ) |
| 24 |
23
|
imaeq2d |
|- ( ( ph /\ ( a e. S /\ b e. T ) /\ c = ( a X. b ) ) -> ( `' H " c ) = ( `' H " ( a X. b ) ) ) |
| 25 |
|
simp1 |
|- ( ( ph /\ ( a e. S /\ b e. T ) /\ c = ( a X. b ) ) -> ph ) |
| 26 |
|
simp2l |
|- ( ( ph /\ ( a e. S /\ b e. T ) /\ c = ( a X. b ) ) -> a e. S ) |
| 27 |
|
simp2r |
|- ( ( ph /\ ( a e. S /\ b e. T ) /\ c = ( a X. b ) ) -> b e. T ) |
| 28 |
7 9 6
|
xppreima2 |
|- ( ph -> ( `' H " ( a X. b ) ) = ( ( `' F " a ) i^i ( `' G " b ) ) ) |
| 29 |
28
|
3ad2ant1 |
|- ( ( ph /\ a e. S /\ b e. T ) -> ( `' H " ( a X. b ) ) = ( ( `' F " a ) i^i ( `' G " b ) ) ) |
| 30 |
1
|
3ad2ant1 |
|- ( ( ph /\ a e. S /\ b e. T ) -> R e. U. ran sigAlgebra ) |
| 31 |
2
|
3ad2ant1 |
|- ( ( ph /\ a e. S /\ b e. T ) -> S e. U. ran sigAlgebra ) |
| 32 |
4
|
3ad2ant1 |
|- ( ( ph /\ a e. S /\ b e. T ) -> F e. ( R MblFnM S ) ) |
| 33 |
|
simp2 |
|- ( ( ph /\ a e. S /\ b e. T ) -> a e. S ) |
| 34 |
30 31 32 33
|
mbfmcnvima |
|- ( ( ph /\ a e. S /\ b e. T ) -> ( `' F " a ) e. R ) |
| 35 |
3
|
3ad2ant1 |
|- ( ( ph /\ a e. S /\ b e. T ) -> T e. U. ran sigAlgebra ) |
| 36 |
5
|
3ad2ant1 |
|- ( ( ph /\ a e. S /\ b e. T ) -> G e. ( R MblFnM T ) ) |
| 37 |
|
simp3 |
|- ( ( ph /\ a e. S /\ b e. T ) -> b e. T ) |
| 38 |
30 35 36 37
|
mbfmcnvima |
|- ( ( ph /\ a e. S /\ b e. T ) -> ( `' G " b ) e. R ) |
| 39 |
|
inelsiga |
|- ( ( R e. U. ran sigAlgebra /\ ( `' F " a ) e. R /\ ( `' G " b ) e. R ) -> ( ( `' F " a ) i^i ( `' G " b ) ) e. R ) |
| 40 |
30 34 38 39
|
syl3anc |
|- ( ( ph /\ a e. S /\ b e. T ) -> ( ( `' F " a ) i^i ( `' G " b ) ) e. R ) |
| 41 |
29 40
|
eqeltrd |
|- ( ( ph /\ a e. S /\ b e. T ) -> ( `' H " ( a X. b ) ) e. R ) |
| 42 |
25 26 27 41
|
syl3anc |
|- ( ( ph /\ ( a e. S /\ b e. T ) /\ c = ( a X. b ) ) -> ( `' H " ( a X. b ) ) e. R ) |
| 43 |
24 42
|
eqeltrd |
|- ( ( ph /\ ( a e. S /\ b e. T ) /\ c = ( a X. b ) ) -> ( `' H " c ) e. R ) |
| 44 |
43
|
3expia |
|- ( ( ph /\ ( a e. S /\ b e. T ) ) -> ( c = ( a X. b ) -> ( `' H " c ) e. R ) ) |
| 45 |
44
|
rexlimdvva |
|- ( ph -> ( E. a e. S E. b e. T c = ( a X. b ) -> ( `' H " c ) e. R ) ) |
| 46 |
45
|
imp |
|- ( ( ph /\ E. a e. S E. b e. T c = ( a X. b ) ) -> ( `' H " c ) e. R ) |
| 47 |
22 46
|
sylan2b |
|- ( ( ph /\ c e. ran ( a e. S , b e. T |-> ( a X. b ) ) ) -> ( `' H " c ) e. R ) |
| 48 |
47
|
ralrimiva |
|- ( ph -> A. c e. ran ( a e. S , b e. T |-> ( a X. b ) ) ( `' H " c ) e. R ) |
| 49 |
|
eqid |
|- ran ( a e. S , b e. T |-> ( a X. b ) ) = ran ( a e. S , b e. T |-> ( a X. b ) ) |
| 50 |
49
|
txbasex |
|- ( ( S e. U. ran sigAlgebra /\ T e. U. ran sigAlgebra ) -> ran ( a e. S , b e. T |-> ( a X. b ) ) e. _V ) |
| 51 |
2 3 50
|
syl2anc |
|- ( ph -> ran ( a e. S , b e. T |-> ( a X. b ) ) e. _V ) |
| 52 |
49
|
sxval |
|- ( ( S e. U. ran sigAlgebra /\ T e. U. ran sigAlgebra ) -> ( S sX T ) = ( sigaGen ` ran ( a e. S , b e. T |-> ( a X. b ) ) ) ) |
| 53 |
2 3 52
|
syl2anc |
|- ( ph -> ( S sX T ) = ( sigaGen ` ran ( a e. S , b e. T |-> ( a X. b ) ) ) ) |
| 54 |
51 1 53
|
imambfm |
|- ( ph -> ( H e. ( R MblFnM ( S sX T ) ) <-> ( H : U. R --> U. ( S sX T ) /\ A. c e. ran ( a e. S , b e. T |-> ( a X. b ) ) ( `' H " c ) e. R ) ) ) |
| 55 |
17 48 54
|
mpbir2and |
|- ( ph -> H e. ( R MblFnM ( S sX T ) ) ) |