| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mbfmco.1 |
|
| 2 |
|
mbfmco.2 |
|
| 3 |
|
mbfmco.3 |
|
| 4 |
|
mbfmco2.4 |
|
| 5 |
|
mbfmco2.5 |
|
| 6 |
|
mbfmco2.6 |
|
| 7 |
1 2 4
|
mbfmf |
|
| 8 |
7
|
ffvelcdmda |
|
| 9 |
1 3 5
|
mbfmf |
|
| 10 |
9
|
ffvelcdmda |
|
| 11 |
|
opelxpi |
|
| 12 |
8 10 11
|
syl2anc |
|
| 13 |
|
sxuni |
|
| 14 |
2 3 13
|
syl2anc |
|
| 15 |
14
|
adantr |
|
| 16 |
12 15
|
eleqtrd |
|
| 17 |
16 6
|
fmptd |
|
| 18 |
|
eqid |
|
| 19 |
|
vex |
|
| 20 |
|
vex |
|
| 21 |
19 20
|
xpex |
|
| 22 |
18 21
|
elrnmpo |
|
| 23 |
|
simp3 |
|
| 24 |
23
|
imaeq2d |
|
| 25 |
|
simp1 |
|
| 26 |
|
simp2l |
|
| 27 |
|
simp2r |
|
| 28 |
7 9 6
|
xppreima2 |
|
| 29 |
28
|
3ad2ant1 |
|
| 30 |
1
|
3ad2ant1 |
|
| 31 |
2
|
3ad2ant1 |
|
| 32 |
4
|
3ad2ant1 |
|
| 33 |
|
simp2 |
|
| 34 |
30 31 32 33
|
mbfmcnvima |
|
| 35 |
3
|
3ad2ant1 |
|
| 36 |
5
|
3ad2ant1 |
|
| 37 |
|
simp3 |
|
| 38 |
30 35 36 37
|
mbfmcnvima |
|
| 39 |
|
inelsiga |
|
| 40 |
30 34 38 39
|
syl3anc |
|
| 41 |
29 40
|
eqeltrd |
|
| 42 |
25 26 27 41
|
syl3anc |
|
| 43 |
24 42
|
eqeltrd |
|
| 44 |
43
|
3expia |
|
| 45 |
44
|
rexlimdvva |
|
| 46 |
45
|
imp |
|
| 47 |
22 46
|
sylan2b |
|
| 48 |
47
|
ralrimiva |
|
| 49 |
|
eqid |
|
| 50 |
49
|
txbasex |
|
| 51 |
2 3 50
|
syl2anc |
|
| 52 |
49
|
sxval |
|
| 53 |
2 3 52
|
syl2anc |
|
| 54 |
51 1 53
|
imambfm |
|
| 55 |
17 48 54
|
mpbir2and |
|