Metamath Proof Explorer


Theorem mbfmco2

Description: The pair building of two measurable functions is measurable. ( cf. cnmpt1t ). (Contributed by Thierry Arnoux, 6-Jun-2017)

Ref Expression
Hypotheses mbfmco.1 φ R ran sigAlgebra
mbfmco.2 φ S ran sigAlgebra
mbfmco.3 φ T ran sigAlgebra
mbfmco2.4 φ F R MblFn μ S
mbfmco2.5 φ G R MblFn μ T
mbfmco2.6 H = x R F x G x
Assertion mbfmco2 φ H R MblFn μ S × s T

Proof

Step Hyp Ref Expression
1 mbfmco.1 φ R ran sigAlgebra
2 mbfmco.2 φ S ran sigAlgebra
3 mbfmco.3 φ T ran sigAlgebra
4 mbfmco2.4 φ F R MblFn μ S
5 mbfmco2.5 φ G R MblFn μ T
6 mbfmco2.6 H = x R F x G x
7 1 2 4 mbfmf φ F : R S
8 7 ffvelrnda φ x R F x S
9 1 3 5 mbfmf φ G : R T
10 9 ffvelrnda φ x R G x T
11 opelxpi F x S G x T F x G x S × T
12 8 10 11 syl2anc φ x R F x G x S × T
13 sxuni S ran sigAlgebra T ran sigAlgebra S × T = S × s T
14 2 3 13 syl2anc φ S × T = S × s T
15 14 adantr φ x R S × T = S × s T
16 12 15 eleqtrd φ x R F x G x S × s T
17 16 6 fmptd φ H : R S × s T
18 eqid a S , b T a × b = a S , b T a × b
19 vex a V
20 vex b V
21 19 20 xpex a × b V
22 18 21 elrnmpo c ran a S , b T a × b a S b T c = a × b
23 simp3 φ a S b T c = a × b c = a × b
24 23 imaeq2d φ a S b T c = a × b H -1 c = H -1 a × b
25 simp1 φ a S b T c = a × b φ
26 simp2l φ a S b T c = a × b a S
27 simp2r φ a S b T c = a × b b T
28 7 9 6 xppreima2 φ H -1 a × b = F -1 a G -1 b
29 28 3ad2ant1 φ a S b T H -1 a × b = F -1 a G -1 b
30 1 3ad2ant1 φ a S b T R ran sigAlgebra
31 2 3ad2ant1 φ a S b T S ran sigAlgebra
32 4 3ad2ant1 φ a S b T F R MblFn μ S
33 simp2 φ a S b T a S
34 30 31 32 33 mbfmcnvima φ a S b T F -1 a R
35 3 3ad2ant1 φ a S b T T ran sigAlgebra
36 5 3ad2ant1 φ a S b T G R MblFn μ T
37 simp3 φ a S b T b T
38 30 35 36 37 mbfmcnvima φ a S b T G -1 b R
39 inelsiga R ran sigAlgebra F -1 a R G -1 b R F -1 a G -1 b R
40 30 34 38 39 syl3anc φ a S b T F -1 a G -1 b R
41 29 40 eqeltrd φ a S b T H -1 a × b R
42 25 26 27 41 syl3anc φ a S b T c = a × b H -1 a × b R
43 24 42 eqeltrd φ a S b T c = a × b H -1 c R
44 43 3expia φ a S b T c = a × b H -1 c R
45 44 rexlimdvva φ a S b T c = a × b H -1 c R
46 45 imp φ a S b T c = a × b H -1 c R
47 22 46 sylan2b φ c ran a S , b T a × b H -1 c R
48 47 ralrimiva φ c ran a S , b T a × b H -1 c R
49 eqid ran a S , b T a × b = ran a S , b T a × b
50 49 txbasex S ran sigAlgebra T ran sigAlgebra ran a S , b T a × b V
51 2 3 50 syl2anc φ ran a S , b T a × b V
52 49 sxval S ran sigAlgebra T ran sigAlgebra S × s T = 𝛔 ran a S , b T a × b
53 2 3 52 syl2anc φ S × s T = 𝛔 ran a S , b T a × b
54 51 1 53 imambfm φ H R MblFn μ S × s T H : R S × s T c ran a S , b T a × b H -1 c R
55 17 48 54 mpbir2and φ H R MblFn μ S × s T