| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xppreima2.1 |
|
| 2 |
|
xppreima2.2 |
|
| 3 |
|
xppreima2.3 |
|
| 4 |
3
|
funmpt2 |
|
| 5 |
1
|
ffvelcdmda |
|
| 6 |
2
|
ffvelcdmda |
|
| 7 |
|
opelxp |
|
| 8 |
5 6 7
|
sylanbrc |
|
| 9 |
8 3
|
fmptd |
|
| 10 |
9
|
frnd |
|
| 11 |
|
xpss |
|
| 12 |
10 11
|
sstrdi |
|
| 13 |
|
xppreima |
|
| 14 |
4 12 13
|
sylancr |
|
| 15 |
|
fo1st |
|
| 16 |
|
fofn |
|
| 17 |
15 16
|
ax-mp |
|
| 18 |
|
opex |
|
| 19 |
18 3
|
fnmpti |
|
| 20 |
|
ssv |
|
| 21 |
|
fnco |
|
| 22 |
17 19 20 21
|
mp3an |
|
| 23 |
22
|
a1i |
|
| 24 |
1
|
ffnd |
|
| 25 |
4
|
a1i |
|
| 26 |
12
|
adantr |
|
| 27 |
|
simpr |
|
| 28 |
18 3
|
dmmpti |
|
| 29 |
27 28
|
eleqtrrdi |
|
| 30 |
|
opfv |
|
| 31 |
25 26 29 30
|
syl21anc |
|
| 32 |
3
|
fvmpt2 |
|
| 33 |
27 8 32
|
syl2anc |
|
| 34 |
31 33
|
eqtr3d |
|
| 35 |
|
fvex |
|
| 36 |
|
fvex |
|
| 37 |
35 36
|
opth |
|
| 38 |
34 37
|
sylib |
|
| 39 |
38
|
simpld |
|
| 40 |
23 24 39
|
eqfnfvd |
|
| 41 |
40
|
cnveqd |
|
| 42 |
41
|
imaeq1d |
|
| 43 |
|
fo2nd |
|
| 44 |
|
fofn |
|
| 45 |
43 44
|
ax-mp |
|
| 46 |
|
fnco |
|
| 47 |
45 19 20 46
|
mp3an |
|
| 48 |
47
|
a1i |
|
| 49 |
2
|
ffnd |
|
| 50 |
38
|
simprd |
|
| 51 |
48 49 50
|
eqfnfvd |
|
| 52 |
51
|
cnveqd |
|
| 53 |
52
|
imaeq1d |
|
| 54 |
42 53
|
ineq12d |
|
| 55 |
14 54
|
eqtrd |
|