Metamath Proof Explorer


Theorem abfmpunirn

Description: Membership in a union of a mapping function-defined family of sets. (Contributed by Thierry Arnoux, 28-Sep-2016)

Ref Expression
Hypotheses abfmpunirn.1 F = x V y | φ
abfmpunirn.2 y | φ V
abfmpunirn.3 y = B φ ψ
Assertion abfmpunirn B ran F B V x V ψ

Proof

Step Hyp Ref Expression
1 abfmpunirn.1 F = x V y | φ
2 abfmpunirn.2 y | φ V
3 abfmpunirn.3 y = B φ ψ
4 elex B ran F B V
5 2 1 fnmpti F Fn V
6 fnunirn F Fn V B ran F x V B F x
7 5 6 ax-mp B ran F x V B F x
8 1 fvmpt2 x V y | φ V F x = y | φ
9 2 8 mpan2 x V F x = y | φ
10 9 eleq2d x V B F x B y | φ
11 10 rexbiia x V B F x x V B y | φ
12 7 11 bitri B ran F x V B y | φ
13 3 elabg B V B y | φ ψ
14 13 rexbidv B V x V B y | φ x V ψ
15 12 14 syl5bb B V B ran F x V ψ
16 4 15 biadanii B ran F B V x V ψ