Metamath Proof Explorer


Theorem mbfmvolf

Description: Measurable functions with respect to the Lebesgue measure are real-valued functions on the real numbers. (Contributed by Thierry Arnoux, 27-Mar-2017)

Ref Expression
Assertion mbfmvolf FdomvolMblFnμ𝔅F:

Proof

Step Hyp Ref Expression
1 dmvlsiga domvolsigAlgebra
2 issgon domvolsigAlgebradomvolransigAlgebra=domvol
3 1 2 mpbi domvolransigAlgebra=domvol
4 3 simpli domvolransigAlgebra
5 4 a1i FdomvolMblFnμ𝔅domvolransigAlgebra
6 brsigarn 𝔅sigAlgebra
7 issgon 𝔅sigAlgebra𝔅ransigAlgebra=𝔅
8 6 7 mpbi 𝔅ransigAlgebra=𝔅
9 8 simpli 𝔅ransigAlgebra
10 9 a1i FdomvolMblFnμ𝔅𝔅ransigAlgebra
11 id FdomvolMblFnμ𝔅FdomvolMblFnμ𝔅
12 5 10 11 mbfmf FdomvolMblFnμ𝔅F:domvol𝔅
13 3 simpri =domvol
14 8 simpri =𝔅
15 13 14 feq23i F:F:domvol𝔅
16 12 15 sylibr FdomvolMblFnμ𝔅F: