Metamath Proof Explorer


Theorem mbfmvolf

Description: Measurable functions with respect to the Lebesgue measure are real-valued functions on the real numbers. (Contributed by Thierry Arnoux, 27-Mar-2017)

Ref Expression
Assertion mbfmvolf F dom vol MblFn μ 𝔅 F :

Proof

Step Hyp Ref Expression
1 dmvlsiga dom vol sigAlgebra
2 issgon dom vol sigAlgebra dom vol ran sigAlgebra = dom vol
3 1 2 mpbi dom vol ran sigAlgebra = dom vol
4 3 simpli dom vol ran sigAlgebra
5 4 a1i F dom vol MblFn μ 𝔅 dom vol ran sigAlgebra
6 brsigarn 𝔅 sigAlgebra
7 issgon 𝔅 sigAlgebra 𝔅 ran sigAlgebra = 𝔅
8 6 7 mpbi 𝔅 ran sigAlgebra = 𝔅
9 8 simpli 𝔅 ran sigAlgebra
10 9 a1i F dom vol MblFn μ 𝔅 𝔅 ran sigAlgebra
11 id F dom vol MblFn μ 𝔅 F dom vol MblFn μ 𝔅
12 5 10 11 mbfmf F dom vol MblFn μ 𝔅 F : dom vol 𝔅
13 3 simpri = dom vol
14 8 simpri = 𝔅
15 13 14 feq23i F : F : dom vol 𝔅
16 12 15 sylibr F dom vol MblFn μ 𝔅 F :