Metamath Proof Explorer


Theorem elmbfmvol2

Description: Measurable functions with respect to the Lebesgue measure. We only have the inclusion, since MblFn includes complex-valued functions. (Contributed by Thierry Arnoux, 26-Jan-2017)

Ref Expression
Assertion elmbfmvol2 F dom vol MblFn μ 𝔅 F MblFn

Proof

Step Hyp Ref Expression
1 retopbas ran . TopBases
2 bastg ran . TopBases ran . topGen ran .
3 1 2 ax-mp ran . topGen ran .
4 retop topGen ran . Top
5 sssigagen topGen ran . Top topGen ran . 𝛔 topGen ran .
6 4 5 ax-mp topGen ran . 𝛔 topGen ran .
7 3 6 sstri ran . 𝛔 topGen ran .
8 df-brsiga 𝔅 = 𝛔 topGen ran .
9 7 8 sseqtrri ran . 𝔅
10 eqid vol = vol
11 dmvlsiga dom vol sigAlgebra
12 elrnsiga dom vol sigAlgebra dom vol ran sigAlgebra
13 11 12 mp1i vol = vol dom vol ran sigAlgebra
14 brsigarn 𝔅 sigAlgebra
15 elrnsiga 𝔅 sigAlgebra 𝔅 ran sigAlgebra
16 14 15 mp1i vol = vol 𝔅 ran sigAlgebra
17 13 16 ismbfm vol = vol F dom vol MblFn μ 𝔅 F 𝔅 dom vol x 𝔅 F -1 x dom vol
18 10 17 ax-mp F dom vol MblFn μ 𝔅 F 𝔅 dom vol x 𝔅 F -1 x dom vol
19 18 simprbi F dom vol MblFn μ 𝔅 x 𝔅 F -1 x dom vol
20 ssralv ran . 𝔅 x 𝔅 F -1 x dom vol x ran . F -1 x dom vol
21 9 19 20 mpsyl F dom vol MblFn μ 𝔅 x ran . F -1 x dom vol
22 18 simplbi F dom vol MblFn μ 𝔅 F 𝔅 dom vol
23 elmapi F F :
24 unibrsiga 𝔅 =
25 unidmvol dom vol =
26 24 25 oveq12i 𝔅 dom vol =
27 23 26 eleq2s F 𝔅 dom vol F :
28 ismbf F : F MblFn x ran . F -1 x dom vol
29 22 27 28 3syl F dom vol MblFn μ 𝔅 F MblFn x ran . F -1 x dom vol
30 21 29 mpbird F dom vol MblFn μ 𝔅 F MblFn