| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pwsiga |
|
| 2 |
|
elrnsiga |
|
| 3 |
1 2
|
syl |
|
| 4 |
|
brsigarn |
|
| 5 |
|
elrnsiga |
|
| 6 |
4 5
|
mp1i |
|
| 7 |
3 6
|
ismbfm |
|
| 8 |
|
unibrsiga |
|
| 9 |
|
reex |
|
| 10 |
8 9
|
eqeltri |
|
| 11 |
|
unipw |
|
| 12 |
|
elex |
|
| 13 |
11 12
|
eqeltrid |
|
| 14 |
|
elmapg |
|
| 15 |
10 13 14
|
sylancr |
|
| 16 |
11
|
feq2i |
|
| 17 |
15 16
|
bitrdi |
|
| 18 |
|
ffn |
|
| 19 |
17 18
|
biimtrdi |
|
| 20 |
|
elpreima |
|
| 21 |
|
simpl |
|
| 22 |
20 21
|
biimtrdi |
|
| 23 |
22
|
ssrdv |
|
| 24 |
|
vex |
|
| 25 |
24
|
cnvex |
|
| 26 |
|
imaexg |
|
| 27 |
25 26
|
ax-mp |
|
| 28 |
27
|
elpw |
|
| 29 |
23 28
|
sylibr |
|
| 30 |
29
|
ralrimivw |
|
| 31 |
19 30
|
syl6 |
|
| 32 |
31
|
pm4.71d |
|
| 33 |
7 32
|
bitr4d |
|
| 34 |
33
|
eqrdv |
|
| 35 |
8 11
|
oveq12i |
|
| 36 |
34 35
|
eqtrdi |
|