Metamath Proof Explorer


Theorem mbfmcnt

Description: All functions are measurable with respect to the counting measure. (Contributed by Thierry Arnoux, 24-Jan-2017)

Ref Expression
Assertion mbfmcnt OV𝒫OMblFnμ𝔅=O

Proof

Step Hyp Ref Expression
1 pwsiga OV𝒫OsigAlgebraO
2 elrnsiga 𝒫OsigAlgebraO𝒫OransigAlgebra
3 1 2 syl OV𝒫OransigAlgebra
4 brsigarn 𝔅sigAlgebra
5 elrnsiga 𝔅sigAlgebra𝔅ransigAlgebra
6 4 5 mp1i OV𝔅ransigAlgebra
7 3 6 ismbfm OVf𝒫OMblFnμ𝔅f𝔅𝒫Ox𝔅f-1x𝒫O
8 unibrsiga 𝔅=
9 reex V
10 8 9 eqeltri 𝔅V
11 unipw 𝒫O=O
12 elex OVOV
13 11 12 eqeltrid OV𝒫OV
14 elmapg 𝔅V𝒫OVf𝔅𝒫Of:𝒫O𝔅
15 10 13 14 sylancr OVf𝔅𝒫Of:𝒫O𝔅
16 11 feq2i f:𝒫O𝔅f:O𝔅
17 15 16 bitrdi OVf𝔅𝒫Of:O𝔅
18 ffn f:O𝔅fFnO
19 17 18 syl6bi OVf𝔅𝒫OfFnO
20 elpreima fFnOyf-1xyOfyx
21 simpl yOfyxyO
22 20 21 syl6bi fFnOyf-1xyO
23 22 ssrdv fFnOf-1xO
24 vex fV
25 24 cnvex f-1V
26 imaexg f-1Vf-1xV
27 25 26 ax-mp f-1xV
28 27 elpw f-1x𝒫Of-1xO
29 23 28 sylibr fFnOf-1x𝒫O
30 29 ralrimivw fFnOx𝔅f-1x𝒫O
31 19 30 syl6 OVf𝔅𝒫Ox𝔅f-1x𝒫O
32 31 pm4.71d OVf𝔅𝒫Of𝔅𝒫Ox𝔅f-1x𝒫O
33 7 32 bitr4d OVf𝒫OMblFnμ𝔅f𝔅𝒫O
34 33 eqrdv OV𝒫OMblFnμ𝔅=𝔅𝒫O
35 8 11 oveq12i 𝔅𝒫O=O
36 34 35 eqtrdi OV𝒫OMblFnμ𝔅=O