Step |
Hyp |
Ref |
Expression |
1 |
|
pwsiga |
⊢ ( 𝑂 ∈ 𝑉 → 𝒫 𝑂 ∈ ( sigAlgebra ‘ 𝑂 ) ) |
2 |
|
elrnsiga |
⊢ ( 𝒫 𝑂 ∈ ( sigAlgebra ‘ 𝑂 ) → 𝒫 𝑂 ∈ ∪ ran sigAlgebra ) |
3 |
1 2
|
syl |
⊢ ( 𝑂 ∈ 𝑉 → 𝒫 𝑂 ∈ ∪ ran sigAlgebra ) |
4 |
|
brsigarn |
⊢ 𝔅ℝ ∈ ( sigAlgebra ‘ ℝ ) |
5 |
|
elrnsiga |
⊢ ( 𝔅ℝ ∈ ( sigAlgebra ‘ ℝ ) → 𝔅ℝ ∈ ∪ ran sigAlgebra ) |
6 |
4 5
|
mp1i |
⊢ ( 𝑂 ∈ 𝑉 → 𝔅ℝ ∈ ∪ ran sigAlgebra ) |
7 |
3 6
|
ismbfm |
⊢ ( 𝑂 ∈ 𝑉 → ( 𝑓 ∈ ( 𝒫 𝑂 MblFnM 𝔅ℝ ) ↔ ( 𝑓 ∈ ( ∪ 𝔅ℝ ↑m ∪ 𝒫 𝑂 ) ∧ ∀ 𝑥 ∈ 𝔅ℝ ( ◡ 𝑓 “ 𝑥 ) ∈ 𝒫 𝑂 ) ) ) |
8 |
|
unibrsiga |
⊢ ∪ 𝔅ℝ = ℝ |
9 |
|
reex |
⊢ ℝ ∈ V |
10 |
8 9
|
eqeltri |
⊢ ∪ 𝔅ℝ ∈ V |
11 |
|
unipw |
⊢ ∪ 𝒫 𝑂 = 𝑂 |
12 |
|
elex |
⊢ ( 𝑂 ∈ 𝑉 → 𝑂 ∈ V ) |
13 |
11 12
|
eqeltrid |
⊢ ( 𝑂 ∈ 𝑉 → ∪ 𝒫 𝑂 ∈ V ) |
14 |
|
elmapg |
⊢ ( ( ∪ 𝔅ℝ ∈ V ∧ ∪ 𝒫 𝑂 ∈ V ) → ( 𝑓 ∈ ( ∪ 𝔅ℝ ↑m ∪ 𝒫 𝑂 ) ↔ 𝑓 : ∪ 𝒫 𝑂 ⟶ ∪ 𝔅ℝ ) ) |
15 |
10 13 14
|
sylancr |
⊢ ( 𝑂 ∈ 𝑉 → ( 𝑓 ∈ ( ∪ 𝔅ℝ ↑m ∪ 𝒫 𝑂 ) ↔ 𝑓 : ∪ 𝒫 𝑂 ⟶ ∪ 𝔅ℝ ) ) |
16 |
11
|
feq2i |
⊢ ( 𝑓 : ∪ 𝒫 𝑂 ⟶ ∪ 𝔅ℝ ↔ 𝑓 : 𝑂 ⟶ ∪ 𝔅ℝ ) |
17 |
15 16
|
bitrdi |
⊢ ( 𝑂 ∈ 𝑉 → ( 𝑓 ∈ ( ∪ 𝔅ℝ ↑m ∪ 𝒫 𝑂 ) ↔ 𝑓 : 𝑂 ⟶ ∪ 𝔅ℝ ) ) |
18 |
|
ffn |
⊢ ( 𝑓 : 𝑂 ⟶ ∪ 𝔅ℝ → 𝑓 Fn 𝑂 ) |
19 |
17 18
|
syl6bi |
⊢ ( 𝑂 ∈ 𝑉 → ( 𝑓 ∈ ( ∪ 𝔅ℝ ↑m ∪ 𝒫 𝑂 ) → 𝑓 Fn 𝑂 ) ) |
20 |
|
elpreima |
⊢ ( 𝑓 Fn 𝑂 → ( 𝑦 ∈ ( ◡ 𝑓 “ 𝑥 ) ↔ ( 𝑦 ∈ 𝑂 ∧ ( 𝑓 ‘ 𝑦 ) ∈ 𝑥 ) ) ) |
21 |
|
simpl |
⊢ ( ( 𝑦 ∈ 𝑂 ∧ ( 𝑓 ‘ 𝑦 ) ∈ 𝑥 ) → 𝑦 ∈ 𝑂 ) |
22 |
20 21
|
syl6bi |
⊢ ( 𝑓 Fn 𝑂 → ( 𝑦 ∈ ( ◡ 𝑓 “ 𝑥 ) → 𝑦 ∈ 𝑂 ) ) |
23 |
22
|
ssrdv |
⊢ ( 𝑓 Fn 𝑂 → ( ◡ 𝑓 “ 𝑥 ) ⊆ 𝑂 ) |
24 |
|
vex |
⊢ 𝑓 ∈ V |
25 |
24
|
cnvex |
⊢ ◡ 𝑓 ∈ V |
26 |
|
imaexg |
⊢ ( ◡ 𝑓 ∈ V → ( ◡ 𝑓 “ 𝑥 ) ∈ V ) |
27 |
25 26
|
ax-mp |
⊢ ( ◡ 𝑓 “ 𝑥 ) ∈ V |
28 |
27
|
elpw |
⊢ ( ( ◡ 𝑓 “ 𝑥 ) ∈ 𝒫 𝑂 ↔ ( ◡ 𝑓 “ 𝑥 ) ⊆ 𝑂 ) |
29 |
23 28
|
sylibr |
⊢ ( 𝑓 Fn 𝑂 → ( ◡ 𝑓 “ 𝑥 ) ∈ 𝒫 𝑂 ) |
30 |
29
|
ralrimivw |
⊢ ( 𝑓 Fn 𝑂 → ∀ 𝑥 ∈ 𝔅ℝ ( ◡ 𝑓 “ 𝑥 ) ∈ 𝒫 𝑂 ) |
31 |
19 30
|
syl6 |
⊢ ( 𝑂 ∈ 𝑉 → ( 𝑓 ∈ ( ∪ 𝔅ℝ ↑m ∪ 𝒫 𝑂 ) → ∀ 𝑥 ∈ 𝔅ℝ ( ◡ 𝑓 “ 𝑥 ) ∈ 𝒫 𝑂 ) ) |
32 |
31
|
pm4.71d |
⊢ ( 𝑂 ∈ 𝑉 → ( 𝑓 ∈ ( ∪ 𝔅ℝ ↑m ∪ 𝒫 𝑂 ) ↔ ( 𝑓 ∈ ( ∪ 𝔅ℝ ↑m ∪ 𝒫 𝑂 ) ∧ ∀ 𝑥 ∈ 𝔅ℝ ( ◡ 𝑓 “ 𝑥 ) ∈ 𝒫 𝑂 ) ) ) |
33 |
7 32
|
bitr4d |
⊢ ( 𝑂 ∈ 𝑉 → ( 𝑓 ∈ ( 𝒫 𝑂 MblFnM 𝔅ℝ ) ↔ 𝑓 ∈ ( ∪ 𝔅ℝ ↑m ∪ 𝒫 𝑂 ) ) ) |
34 |
33
|
eqrdv |
⊢ ( 𝑂 ∈ 𝑉 → ( 𝒫 𝑂 MblFnM 𝔅ℝ ) = ( ∪ 𝔅ℝ ↑m ∪ 𝒫 𝑂 ) ) |
35 |
8 11
|
oveq12i |
⊢ ( ∪ 𝔅ℝ ↑m ∪ 𝒫 𝑂 ) = ( ℝ ↑m 𝑂 ) |
36 |
34 35
|
eqtrdi |
⊢ ( 𝑂 ∈ 𝑉 → ( 𝒫 𝑂 MblFnM 𝔅ℝ ) = ( ℝ ↑m 𝑂 ) ) |